Differential Cross-Sections for the pi0 Photoproduction at Theta (CM) = 90-Degrees and K (Lab) = 380-MeV-820-MeV

Jung, M. ; Kattein, J. ; Leu, P. ; et al.
BONN-HE-76-15, 1976.
Inspire Record 111677 DOI 10.17182/hepdata.50235

None

1 data table match query

No description provided.


Production of $K \bar{K}$ Pairs in Photon-photon Collisions and the Excitation of the Tensor Meson F-prime (1515)

The TASSO collaboration Althoff, M. ; Brandelik, R. ; Braunschweig, W. ; et al.
Phys.Lett.B 121 (1983) 216-222, 1983.
Inspire Record 181468 DOI 10.17182/hepdata.30814

We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .

2 data tables match query

Data read from graph.. Errors are the square roots of the number of events.

Data read from graph.. Errors are the square roots of the number of events.


Production of Four Prong Final States in Photon-photon Collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 37 (1988) 28, 1988.
Inspire Record 261630 DOI 10.17182/hepdata.3824

Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.

2 data tables match query

TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.

UNTAGGED DATA.


Multihadron production in e+ e- collisions at high energy

Grilli, M. ; Iarocci, E. ; Spillantini, P. ; et al.
Nuovo Cim.A 13 (1973) 593-644, 1973.
Inspire Record 87243 DOI 10.17182/hepdata.1179

Multihadron production by electron-positron colliding beams has been investigated for total centre-of-mass energies ranging from 1.2 to 2.4 GeV. The total cross-section, σtot ≡ σ(e+e−→π+π−+ + anything), is of the order of σμμ ≡ σ(e+e−→μ+μ−), with a threshold near 1 GeV. Partial cross-sections for the various channels are also derived. The cross-section of the specific channel e+e−→π+π−π+π− exhibits an energy dependence which is suggestive of a heavier vector meson, ρ' (mρ,≈ 1.6 GeV,Гρ, ≈ 350 Mev), having the same quantum numbers as the ρ-meson. An upper limit is given for the coupling constantfρ′ (fρ′/4π<18, wherefρ′=mρ′2e/gγρ′). Final states withG+ parity are found to be much more abundant than those withG− parity. The average multiplicity (charged plus neutral final-state pions) is found to be betweet 4 and 5 over all the energy range explored.

3 data tables match query

No description provided.

VALUES OF R CALCULATED FROM TOTAL CROSS SECTION.

No description provided.


Backward photoproduction of neutral pions off hydrogen at photon energies between 0.4 and 2.2 gev

Becks, H. ; Feller, P. ; Menze, D. ; et al.
Nucl.Phys.B 60 (1973) 267-276, 1973.
Inspire Record 83927 DOI 10.17182/hepdata.6749

The differential cross section has been measured for the reaction γ +p→p+ π o at the Bonn 2.5 GeV electron synchrotron in the energy range from 0.4 to 2.2 GeV for a c.m. angle of 150 degrees. The protons were detected in a magnetic spectrometer system. The excitation curve shows a distinct resonance structure. The total corrections to the counting rate are about 3%. The contribution of the process γ +p→p+2 π was separated. The uncertainty of this separation leads to an error of about 4% in the cross section.

2 data tables match query

No description provided.

No description provided.


Study of Neutrino Interactions in Hydrogen and Deuterium. 1. Description of the Experiment and Study of the Reaction Neutrino d --> mu- p p(s)

Barish, S.J. ; Campbell, J. ; Charlton, G. ; et al.
Phys.Rev.D 16 (1977) 3103, 1977.
Inspire Record 5566 DOI 10.17182/hepdata.24481

This paper gives a detailed description of an experiment which studies the interactions of muon-type neutrinos in hydrogen and deuterium. The experiment was performed at the Zero Gradient Synchrotron using the wide-band neutrino beam incident on the Argonne 12-foot bubble chamber filled with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has a tail extending to 6 GeV. The shape and intensity of the flux is determined using measurements of pion yields from beryllium. The produced pions are focused by one or (for the latter part of the experiment) two magnetic horns. A total of 364000 pictures were taken with a hydrogen filling of the bubble chamber and 903 000 with a deuterium filling. The scanning and other analyses of the events are described. The most abundant reaction occurs off neutrons and is quasi-elastic scattering νd→μ−pps. The separation of these events from background channels is discussed. The total and differential cross sections are analyzed to obtain the axial-vector form factor of the nucleon. Our result, expressed in terms of a dipole form factor, gives an axial-vector mass of 0.95±0.09 GeV. A comparison is made to previous measurements using neutrino beams, and also to determinations based upon threshold pion electroproduction experiments. In addition, the data are used to measure the weak vector form factor and so check the conserved-vector-current hypothesis.

1 data table match query

Measured Quasi-Elastic total cross section.


Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0-GeV**2.

The JLab Hall A collaboration Laveissiere, G. ; Degrande, N. ; Jaminion, S. ; et al.
Phys.Rev.C 69 (2004) 045203, 2004.
Inspire Record 625669 DOI 10.17182/hepdata.25226

Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.

12 data tables match query

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.

More…

Photoproduction of positive pions at 180 degrees from 0.22 to 3.1 gev

Bouquet, B. ; D' Almagne, B. ; Eschstruth, P.T. ; et al.
Phys.Rev.Lett. 27 (1971) 1244-1247, 1971.
Inspire Record 68896 DOI 10.17182/hepdata.21483

The π+ photoproduction cross section in hydrogen has been measured at 180° for photon energies from 0.22 to 3.1 GeV by detecting the pion in the backward direction. The statistical accuracy of the measurements varies typically from 3 to 10% depending on the energy. The data are compared with other recent experimental results and predictions of phenomenological theories.

1 data table match query

No description provided.


Hadron Production From Photon - Photon Interactions in the Center-of-mass Energy Range From 1-{GeV} to 5-{GeV}

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 89 (1979) 120-124, 1979.
Inspire Record 142875 DOI 10.17182/hepdata.27291

We present the first data on photon-photon annihilation into hadrons for CM energies > 1 GeV obtained with the detector PLUTO at the e + e − storage ring PETRA. Cross sections are extracted using an inelastic eγ scattering formalism. The results are compared to expectations from Regge-like models.

1 data table match query

DEPENDENCE OF CROSS SECTION FOR ELECTRON-PHOTON SCATTERING (ANALOGOUS TO HAND'S FORMULA) ON VISIBLE HADRONIC ENERGY, CALCULATED BY TAKING PION MASSES FOR ALL CHARGED PARTICLES.


Pion and kaon pair production in photon-photon collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 404, 1986.
Inspire Record 228072 DOI 10.17182/hepdata.20204

We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.

2 data tables match query

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph. Additional overall systematic error 20% not included.