Neutral pion photoproduction off protons in the energy range 0.3-GeV < E(gamma) < 3-GeV.

The CB-ELSA collaboration Bartholomy, O. ; Crede, V. ; van Pee, H. ; et al.
Phys.Rev.Lett. 94 (2005) 012003, 2005.
Inspire Record 654179 DOI 10.17182/hepdata.41902

Single pi0 photoproduction has been studied with the CB-ELSA experiment at Bonn using tagged photon energies between 0.3 and 3.0 GeV. The experimental setup covers a very large solid angle of about 98% of 4 pi. Differential cross sections (d sigma)/(d Omega) have been measured. Complicated structures in the angular distributions indicate a variety of different resonances being produced in the s channel intermediate state gamma p --> N* (Delta*) --> p pi0. A combined analysis including the data presented in this letter along with other data sets reveals contributions from known resonances and evidence for a new resonance N(2070)D15.

2 data tables match query

Total cross section for GAMMA P --> P PI0 obtained by integration of the angular distributions and extrapolation into the forward and backward regions using the PWA result.

Differential cross section as a function of c.m. angle for the photon energy range 425 to 550 GeV.


Measurement of pi- p --> pi0 pi0 n from threshold to p(pi-) 750-MeV/c.

The Crystal Ball collaboration Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 69 (2004) 045202, 2004.
Inspire Record 647544 DOI 10.17182/hepdata.25355

Reaction π−p→π0π0n has been measured with high statistics in the beam momentum range 270–750MeV∕c. The data were obtained using the Crystal Ball multiphoton spectrometer, which has 93% of 4π solid angle coverage. The dynamics of the π−p→π0π0n reaction and the dependence on the beam energy are displayed in total cross sections, Dalitz plots, invariant-mass spectra, and production angular distributions. Special attention is paid to the evaluation of the acceptance that is needed for the precision determination of the total cross section σt(π−p→π0π0n). The energy dependence of σt(π−p→π0π0n) shows a shoulder at the Roper resonance [i.e., the N(1440)12+], and there is also a maximum near the N(1520)32−. It illustrates the importance of these two resonances to the π0π0 production process. The Dalitz plots are highly nonuniform; they indicate that the π0π0n final state is dominantly produced via the π0Δ0(1232) intermediate state. The invariant-mass spectra differ much from the phase-space distributions. The production angular distributions are also different from the isotropic distribution, and their structure depends on the beam energy. For beam momenta above 550MeV∕c, the density distribution in the Dalitz plots strongly depends on the angle of the outgoing dipion system (or equivalently on the neutron angle). The role of the f0(600) meson (also known as the σ) in π0π0n production remains controversial.

2 data tables match query

Measured total cross section. Statistical errors only.

Differential angular distributions of the 2PI0 system for the LH2 data at beam momenta 355 to 472 MeV/c. Statistical errors only.


Photoproduction of Charged pi Mesons from Hydrogen and Deuterium in the Energy Range Between 250-MeV and 790-MeV

Fujii, T. ; Kondo, T. ; Takasaki, F. ; et al.
Nucl.Phys.B 120 (1977) 395-422, 1977.
Inspire Record 108476 DOI 10.17182/hepdata.8405

The differential cross sections for γ p→ π + n from hydrogen and the π − π + ratios from deuterium were measured at nine c.m. angles between 30° and 150° for laboratory photon energies between 260 and 800 MeV. A magnetic spectrometer with three layers of scintillation hodoscope was used to detect charged π mesons. The cross section for γ n→ π − p was obtained as a product of d σ d Ω (γ p →π + n ) and the π − π + ratio. The overall features in the cross sections of the two reactions, γ p→ π + n and γ n→ π − p, and in the ratios, π − π + , agree with predictions by Moorhouse, Oberlack and Rosenfeld, and Metcalf and Walker. An investigation of the possible existence of an isotensor current was made and a negative result was found. In detailed balance comparison with the new results on the inverse reaction π − p→ γ n, no apparent violation of time-reversal invariance was observed.

1 data table match query

No description provided.


ELECTROPRODUCTION OF SINGLE CHARGED PIONS FROM DEUTERIUM AT Q**2 APPROXIMATELY 1-GEV**2 IN THE RESONANCE REGION

Vapenikova, O. ; Allison, John ; Dickinson, B. ; et al.
Z.Phys.C 37 (1988) 251-258, 1988.
Inspire Record 263398 DOI 10.17182/hepdata.898

We present differential cross-sections for the electro-production of single charged pions from deuterium for a virtual photon mass squared −1.0 GeV2 and for pion nucleon masses in the range 1.23–1.68 GeV (the 1st and 2nd resonance regions). The data are compared with predictions from fits to hydrogen data.

6 data tables match query

FORWARD BINS.

No description provided.

FORWARD BINS.

More…

Backward photoproduction of neutral pions off hydrogen at photon energies between 0.4 and 2.2 gev

Becks, H. ; Feller, P. ; Menze, D. ; et al.
Nucl.Phys.B 60 (1973) 267-276, 1973.
Inspire Record 83927 DOI 10.17182/hepdata.6749

The differential cross section has been measured for the reaction γ +p→p+ π o at the Bonn 2.5 GeV electron synchrotron in the energy range from 0.4 to 2.2 GeV for a c.m. angle of 150 degrees. The protons were detected in a magnetic spectrometer system. The excitation curve shows a distinct resonance structure. The total corrections to the counting rate are about 3%. The contribution of the process γ +p→p+2 π was separated. The uncertainty of this separation leads to an error of about 4% in the cross section.

2 data tables match query

No description provided.

No description provided.


pi-p Elastic Scattering in the Energy Range 300-700 MeV

Ogden, Philip M. ; Hagge, Donald E. ; Helland, Jerome A. ; et al.
Phys.Rev. 137 (1965) B1115-B1125, 1965.
Inspire Record 944964 DOI 10.17182/hepdata.537

Differential cross sections for elastic π−p scattering were measured at eight energies for positive pions and seven energies for negative pions. Energies ranged from 310 to 650 MeV. These measurements were made at the 3-GeV proton synchrotron at Saclay, France. A beam of pions from an internal BeO target was directed into a liquid-hydrogen target. Fifty-one scintillation counters and a matrix-coincidence system were used to measure simultaneously elastic events at 21 angles and charged inelastic events at 78 π−p angle pairs. Events were detected by coincidence of pulses indicating the presence of an incident pion, scattered pion, and recoil proton, and the results were stored in the memory of a pulse-height analyzer. Various corrections were applied to the data and a least-squares fit was made to the results at each energy. The form of the fitting function was a power series in the cosine of the center-of-mass angle of the scattered pion. Integration under the fitted curves gave values for the total elastic cross sections (without charge exchange). The importance of certain angular-momentum states is discussed. The π−−p data are consistent with a D13 resonant state at 600 MeV, but do not necessarily require such a resonant state.

1 data table match query

No description provided.


Coincidence electroproduction of single neutral pions in the resonance region at q 2 = 0.5 (GeV/ c ) 2

Latham, A. ; Allison, J. ; Booth, I. ; et al.
Nucl.Phys.B 156 (1979) 58-92, 1979.
Inspire Record 1392686 DOI 10.17182/hepdata.836

Data are presented for the reaction ep → ep π 0 at a nominal four-momentum transfer squared of 0.5 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Details are given of the experimental method and the results are given for isobar masses in the range 1.19 – 1.73 GeV/ c 2 .

4 data tables match query

No description provided.

No description provided.

Backward cross sections.

More…

Photoproduction of Neutral Pions at Energies 500 to 940 Mev

Vette, J.I. ;
Phys.Rev. 111 (1958) 622-631, 1958.
Inspire Record 944995 DOI 10.17182/hepdata.26859

The process γ+p→π0+p has been studied by detecting recoil protons from a liquid hydrogen target which was bombarded by the bremsstrahlung beam of the California Institute of Technology electron synchrotron. The angle and momentum of the recoil protons were measured by a magnetic spectrometer-three scintillation counter coincidence system. The process has been studied between photon laboratory energies of 490 and 940 Mev and between pion center-of-mass angles of 31.5° and 147°. Protons which arose from meson pair production were significant at forward laboratory angles. A correction for this contamination is discussed. The results of these measurements show two interesting features. One is that the total cross section, which falls very rapidly above the 32−32 resonance energy near 320 Mev, reaches a minimum at about 600 Mev, and then increases to a broad maximum near 800 or 900 Mev. The other striking feature of the data is that the shape of the angular distribution seems to change rather suddenly near 900 Mev.

1 data table match query

No description provided.


Photoproduction of pi+ Mesons from Hydrogen in the Region 350-900 Mev

Heinberg, M. ; McClelland, W.M. ; Turkot, F. ; et al.
Phys.Rev. 110 (1958) 1211-1212, 1958.
Inspire Record 46812 DOI 10.17182/hepdata.26860

None

1 data table match query

No description provided.


Photoproduction of Neutral Pions at Forward Angles

Berkelman, Karl ; Waggoner, James A. ;
Phys.Rev. 117 (1960) 1364-1375, 1960.
Inspire Record 46817 DOI 10.17182/hepdata.26899

The bremsstrahlung beam of the Cornell Bev electron synchrotron has been used to study the reaction γ+p→π0+p over the photon energy range 250 Mev to 1 Bev, and for center-of-mass pion angles between 20° and 70°. The recoil protons, of energies between 10 and 60 Mev, were identified and their energies determined using a range telescope of eight thin plastic scintillators enclosed in a vacuum chamber with the thin liquid hydrogen target. Correlated pulse-height information was obtained by photographing an oscilloscope display and was used to sort out the protons from mesons and electrons. Corrections were made for the background of photoprotons from the Mylar target cup, the energy loss of the protons in the liquid hydrogen, absorption and scattering in the counter telescope, and the variation of beam intensity profile with energy. Compared with previous experiments and extrapolations the results show a somewhat smaller forward differential cross section above 400 Mev. The angular distributions obtained from a least-squares fit to all existing data indicate a d32 assignment for the 760-Mev resonance level. Other implications of the data are also discussed.

1 data table match query

No description provided.