pi-p Elastic Scattering in the Energy Range 300-700 MeV

Ogden, Philip M. ; Hagge, Donald E. ; Helland, Jerome A. ; et al.
Phys.Rev. 137 (1965) B1115-B1125, 1965.
Inspire Record 944964 DOI 10.17182/hepdata.537

Differential cross sections for elastic π−p scattering were measured at eight energies for positive pions and seven energies for negative pions. Energies ranged from 310 to 650 MeV. These measurements were made at the 3-GeV proton synchrotron at Saclay, France. A beam of pions from an internal BeO target was directed into a liquid-hydrogen target. Fifty-one scintillation counters and a matrix-coincidence system were used to measure simultaneously elastic events at 21 angles and charged inelastic events at 78 π−p angle pairs. Events were detected by coincidence of pulses indicating the presence of an incident pion, scattered pion, and recoil proton, and the results were stored in the memory of a pulse-height analyzer. Various corrections were applied to the data and a least-squares fit was made to the results at each energy. The form of the fitting function was a power series in the cosine of the center-of-mass angle of the scattered pion. Integration under the fitted curves gave values for the total elastic cross sections (without charge exchange). The importance of certain angular-momentum states is discussed. The π−−p data are consistent with a D13 resonant state at 600 MeV, but do not necessarily require such a resonant state.

1 data table match query

No description provided.


Proton Compton Scattering Measurement From 450 to 1350 MeV Near 90-degrees in the Center-of-Mass System

Rust, D.R. ; Eisenhandler, E. ; Mostek, P.J. ; et al.
Phys.Rev.Lett. 15 (1965) 938-941, 1965.
Inspire Record 944922 DOI 10.17182/hepdata.21794

None

1 data table match query

No description provided.


Photoproduction of pi0 Mesons from Hydrogen near Zero Degrees

Highland, V.L. ; DeWire, J.W. ;
Phys.Rev. 132 (1963) 1293-1297, 1963.
Inspire Record 944974 DOI 10.17182/hepdata.26730

We report measurements of the differential cross section for photoproduction of π0 mesons from hydrogen, with the pion emerging near 0 deg, in the photon energy range 290 to 700 MeV. The results show no unusual behavior of the cross section in the forward direction. They are consistent with the angular distribution characteristic of a magnetic-dipole transition to a P32 state. The results agree reasonably well with theoretical predictions of Gourdin and Salin, but disagree with a prediction of DeTollis and Verganelakis. Least-squares fits in powers of cosθ have been made to the available angular distributions.

1 data table match query

No description provided.


Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

10 data tables match query

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

More…

Photoproduction of Neutral Pions at Energies 500 to 940 Mev

Vette, J.I. ;
Phys.Rev. 111 (1958) 622-631, 1958.
Inspire Record 944995 DOI 10.17182/hepdata.26859

The process γ+p→π0+p has been studied by detecting recoil protons from a liquid hydrogen target which was bombarded by the bremsstrahlung beam of the California Institute of Technology electron synchrotron. The angle and momentum of the recoil protons were measured by a magnetic spectrometer-three scintillation counter coincidence system. The process has been studied between photon laboratory energies of 490 and 940 Mev and between pion center-of-mass angles of 31.5° and 147°. Protons which arose from meson pair production were significant at forward laboratory angles. A correction for this contamination is discussed. The results of these measurements show two interesting features. One is that the total cross section, which falls very rapidly above the 32−32 resonance energy near 320 Mev, reaches a minimum at about 600 Mev, and then increases to a broad maximum near 800 or 900 Mev. The other striking feature of the data is that the shape of the angular distribution seems to change rather suddenly near 900 Mev.

1 data table match query

No description provided.


Photoproduction of pi+ Mesons from Hydrogen in the Region 350-900 Mev

Heinberg, M. ; McClelland, W.M. ; Turkot, F. ; et al.
Phys.Rev. 110 (1958) 1211-1212, 1958.
Inspire Record 46812 DOI 10.17182/hepdata.26860

None

1 data table match query

No description provided.


Photoproduction of Neutral Pions at Forward Angles

Berkelman, Karl ; Waggoner, James A. ;
Phys.Rev. 117 (1960) 1364-1375, 1960.
Inspire Record 46817 DOI 10.17182/hepdata.26899

The bremsstrahlung beam of the Cornell Bev electron synchrotron has been used to study the reaction γ+p→π0+p over the photon energy range 250 Mev to 1 Bev, and for center-of-mass pion angles between 20° and 70°. The recoil protons, of energies between 10 and 60 Mev, were identified and their energies determined using a range telescope of eight thin plastic scintillators enclosed in a vacuum chamber with the thin liquid hydrogen target. Correlated pulse-height information was obtained by photographing an oscilloscope display and was used to sort out the protons from mesons and electrons. Corrections were made for the background of photoprotons from the Mylar target cup, the energy loss of the protons in the liquid hydrogen, absorption and scattering in the counter telescope, and the variation of beam intensity profile with energy. Compared with previous experiments and extrapolations the results show a somewhat smaller forward differential cross section above 400 Mev. The angular distributions obtained from a least-squares fit to all existing data indicate a d32 assignment for the 760-Mev resonance level. Other implications of the data are also discussed.

1 data table match query

No description provided.


High-Energy Photoproduction of pi0 Mesons from Hydrogen

DeWire, J.W. ; Jackson, H.E. ; Littauer, Raphael ;
Phys.Rev. 110 (1958) 1208-1209, 1958.
Inspire Record 944997 DOI 10.17182/hepdata.26907

None

1 data table match query

No description provided.


Single-positive-pion photoproduction on hydrogen in the energy range (500÷800) MeV

Beneventano, M. ; Paoluzi, L. ; Sebastiani, F. ; et al.
Nuovo Cim. 54 (1968) 468-474, 1968.
Inspire Record 1185328 DOI 10.17182/hepdata.37565

Cross-sections for the photoproduction of positive pions in hydrogen have been measured at the 1.1 GeV Frascati electron synchrotron for photon energiesE γ between 500 and 800 MeV and for π+ c.m. angles of θ=30o, 90o. The cross-sections exhibit a smooth behavior as a function of energy forE γ=(500÷600) MeV. No immediate evidence is found of a contribution of theP 11 resonance.

1 data table match query

No description provided.


Photoproduction of Neutral Pions for Incident Photon Energies 400-800 MeV. Search for a Resonant P-11 State and Remarks on the eta Cusp Effect

Bacci, C. ; Penso, G. ; Salvini, G. ; et al.
Phys.Rev. 159 (1967) 1124-1137, 1967.
Inspire Record 944952 DOI 10.17182/hepdata.37216

Cross sections for the photoproduction of neutral pions have been measured at the 1.1-GeV Frascati electron synchrotron for bombarding photon energies k between 400 and 800 MeV and for π0 c.m. angles of θπ*=90∘, 120∘, and 135∘. The main feature of the experiment is good resolution in incident photon energy. The results are in good agreement with the existing theories in the energy range of 450 to 550 MeV. The cross sections exhibit a smooth behavior as a function of energy for k=400−600 MeV. No immediate evidence is found of a contribution of the P11 resonance. An anomaly at the limit of statistical significance appears for k≃700−740 MeV, indicating a possible structure of the so-called second resonance. We attempt to interpret the observed anomaly as a reflection of the sharp opening of the η production channel (η cusp effect).

1 data table match query

No description provided.