Study of Charm Fragmentation into $D^{*\pm}$ Mesons in Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 59 (2009) 589-606, 2009.
Inspire Record 792603 DOI 10.17182/hepdata.45316

The process of charm quark fragmentation is studied using $D^{*\pm}$ meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the $D^{*\pm}$ meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to $D^{*\pm}$ mesons.

20 data tables match query

Normalised D*+- cross section as a function of zJet for the D*+- jet sample.

Normalised D*+- cross section as a function of zHem for the D*+- jet sample.

Normalised D*+- cross section, corrected to the parton level, as a function of zJet for the D*+- jet sample.

More…

Further studies of the photoproduction of isolated photons with a jet at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 08 (2014) 023, 2014.
Inspire Record 1298390 DOI 10.17182/hepdata.64205

In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_\gamma^{\mathrm{meas}}$, contributing to the photon-jet final state. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{\gamma} < 15$ GeV and $-0.7 < \eta^{\gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{\rm jet} < 35$ GeV and $-1.5 < \eta^{\rm jet} < 1.8$, for an integrated luminosity of 374 $\mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.

7 data tables match query

Differential cross-section D(SIG)/DET(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

Differential cross-section D(SIG)/DETARAP(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

Differential cross-section D(SIG)/DET(JET) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.

More…

Measurement of internal jet structure in dijet production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 545 (1999) 3-20, 1999.
Inspire Record 482053 DOI 10.17182/hepdata.32577

Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies ET,Breit > 5 GeV are selected in the Breit frame employing k_perp and cone jet algorithms. In the kinematic region of squared momentum transfers 10 < Q2 <~ 120 GeV2 and x-Bjorken values 2.10^-4 <~ xBj <~ 8.10^-3, jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e.towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data.

24 data tables match query

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range < 1.5 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range 1.5 TO 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range > 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

More…

Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

62 data tables match query

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production.

Visible cross section for inclusive D*+- production with two jets.

More…

A Comparison of the Structure Functions F2 of the Proton and the Neutron From Deep Inelastic Muon Scattering at High $Q^2$

The BCDMS collaboration Benvenuti, A.C. ; Bollini, D. ; Bruni, G. ; et al.
Phys.Lett.B 237 (1990) 599-604, 1990.
Inspire Record 285519 DOI 10.17182/hepdata.29734

High statistics data on the structure functions F 2 of the proton and the deutron measured with the same apparatus in deep inelastic muon scattering are used to study the ratio of structure functions of neutron and proton F 2 n / F 2 p and their difference F 2 p - F 2 n . Both measurements are consistent with predictions of the quark-parton model and of QCD.

2 data tables match query

No description provided.

No description provided.


Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

135 data tables match query

Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.

More…

Measurement of neutral current cross sections at high Bjorken-x with the ZEUS detector at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 49 (2007) 523-544, 2007.
Inspire Record 723329 DOI 10.17182/hepdata.11718

A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.

114 data tables match query

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

More…

Deep inelastic inclusive and diffractive scattering at $Q^2$ values from 25 to 320 GeV$^2$ with the ZEUS forward plug calorimeter

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 800 (2008) 1-76, 2008.
Inspire Record 779854 DOI 10.17182/hepdata.11639

Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.

226 data tables match query

Proton structure function F2 at Q**2 = 25 GeV**2.

Proton structure function F2 at Q**2 = 35 GeV**2.

Proton structure function F2 at Q**2 = 45 GeV**2.

More…

Event shapes in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 767 (2007) 1-28, 2007.
Inspire Record 714503 DOI 10.17182/hepdata.11818

Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 &lt; Q^2 &lt; 20 480\gev^2$ and $0.0024 &lt; x &lt; 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.

69 data tables match query

Mean value of the event shape variable 1-THRUST(C=T).

Mean value of the event shape variable B(C=T).

Mean value of the event shape variable RHO**2.

More…

Measurement of neutral current e+/-p cross sections at high Bjorken x with the ZEUS detector

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Rev.D 89 (2014) 072007, 2014.
Inspire Record 1269458 DOI 10.17182/hepdata.62545

The neutral current e+/-p cross section has been measured up to values of Bjorken x of approximately 1 with the ZEUS detector at HERA using an integrated luminosity of 187 inv. pb of e-p and 142 inv. pb of e+p collisions at sqrt(s) = 318GeV. Differential cross sections in x and Q2, the exchanged boson virtuality, are presented for Q2 geq 725GeV2. An improved reconstruction method and greatly increased amount of data allows a finer binning in the high-x region of the neutral current cross section and leads to a measurement with much improved precision compared to a similar earlier analysis. The measurements are compared to Standard Model expectations based on a variety of recent parton distribution functions.

17 data tables match query

Double differential cross section for Q^2=725 GeV^2.

Double differential cross section for Q^2=875 GeV^2.

Double differential cross section for Q^2=1025 GeV^2.

More…