Comparative Study of rho0, omega, K* (890) and anti-K* (890) Production by Charge Exchange

Wicklund, A.B. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.D 17 (1978) 1197, 1978.
Inspire Record 120816 DOI 10.17182/hepdata.24436

We present cross sections and density-matrix elements from a high-statistics study of the reactions π−p→ρ0n, K−p→K¯*0(890)n, and K+n→K*0(890)p, at 3, 4, and 6 GeV/c and four-momentum transfer squared to the recoil nucleon −t<~0.9 GeV2. The experiment was carried out at the Argonne Zero Gradient Synchrotron using the effective-mass spectrometer. In the same experiment, we have measured the ρ−ω interference cross sections by comparison of the two reactions π−p→π−π+n and π+n→π+π−p, to which the interference terms contribute with opposite signs. We examine the systematics of ρ0 production: In the s channel we find little shrinkage with energy of the helicity-0 cross sections, which are presumably dominated by π exchange; the helicity-1 cross sections exhibit considerable shrinkage for unnatural-parity exchange, and antishrinkage for natural-parity exchange. The K*0 and K¯*0 production observables exhibit significant differences, especially in the helicity-1 states. These differences are due to interference between even- and odd-G-parity exchange amplitudes and they are related by SU(3) symmetry to ρ−ω interference effects and to the ρ0 and ω production observables. It is shown that exchange-degeneracy-breaking effects satisfy SU(3) symmetry and can be explained qualitatively in the frame-work of SU(3)-symmetric, strongly absorbed Regge-pole models. The results of our amplitude analysis are compared with previous phenomenological analyses and model predictions.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of the Reactions $\pi^- p \to K^0(890)\Lambda$, $K^0(890) \Sigma^0$ and $K^0(890) \Sigma^0(1385)$ at 3.95-{GeV}/$c$

The CERN-College de France-Madrid-Stockholm collaboration Aguilar-Benitez, M. ; Albajar, M.C. ; Ferrando, A. ; et al.
Z.Phys.C 6 (1980) 195-215, 1980.
Inspire Record 153917 DOI 10.17182/hepdata.1428

The reactionsπ−p→K0(890) Λ,K0(890)Σ0 andK0(890)Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections, density matrix elements of the vector meson and hyperon polarizations are presented. A transversity amplitude analysis is performed for each of the reactions. The results are compared with those obtained for the SU(3) related processesK−p→ϕΔ, ϕΣ0, ϕΣ0(1385) andϱ−Σ+(1385) and with predictions of the additive quark model and SU(6) sum rules.

39 data tables match query

BREIT-WIGNER FIT WITH BACKGROUND POLYNOMIAL.

BACKWARD CROSS SECTION.

TOTAL CROSS SECTION USING SLICING TECHNIQUE. FORWARD (-TP < 1.2 GEV**2) CROSS SECTION IS 25 +- 2 MUB: DOUBLE MASS CUT GIVES 20 +- 7 PCT BACKGROUND CONTAMINATION.

More…

PHOTOPRODUCTION OF K+ LAMBDA AND K+ SIGMA0 FROM HYDROGEN FROM 5-GeV to 16-Gev

Boyarski, A. ; Bulos, F. ; Busza, W. ; et al.
Phys.Rev.Lett. 22 (1969) 1131-1133, 1969.
Inspire Record 54849 DOI 10.17182/hepdata.3394

Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.

9 data tables match query
More…

Systematic study of pi+- p, k+- p, p p, and anti-p p forward elastic scattering from 3 to 6 gev/c

Ambats, I. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.D 9 (1974) 1179-1209, 1974.
Inspire Record 92992 DOI 10.17182/hepdata.3409

Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.

17 data tables match query

No description provided.

No description provided.

No description provided.

More…

Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables match query

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…

Two-body strange-particle final states in pi- p interactions at 4.5 and 6 gev/c

Crennell, D.J. ; Gordon, H.A. ; Lai, Kwan-Wu ; et al.
Phys.Rev.D 6 (1972) 1220-1254, 1972.
Inspire Record 73936 DOI 10.17182/hepdata.3601

Results on the following π−p reactions involving a hyperon are studied at 4.5 and 6.0 GeV/c from a high-statistics bubble-chamber experiment. (1) π−p→(Λ, Σ0)K0: Differential cross sections and hyperon polarizations are presented. Comparison with the line-reversed reactions K¯N→(Λ, Σ0)π indicates the failure of the predictions of K*(890) and K*(1420) exchange degeneracy. Effective trajectories for these two reactions are compared. Shrinkage is observed in K¯N→Λπ and not in π−p→ΛK0. (2) π−p→(Λ, Σ0)K*(890)0: Differential cross sections, hyperon polarizations, and K*(890)0 density-matrix elements are determined. ΛK*(890)0 decay correlations are found to impose strong constraints on the scattering amplitudes. The data indicate that both natural- and unnatural-parity exchanges contribute large, but opposite, Λ polarizations. This behavior cannot be explained by a simple exchange model utilizing K and the exchange-degenerate K*(890) and K*(1420) only. Additional trajectories or absorption effects are required to obtain the observed Λ-polarization effects. Comparison of ΛK*(890)0 and Σ0K*(890)0 indicates the greater importance of unnatural-parity exchange in the former reaction. We observe no evidence for deviations from isospin predictions in ΛK*(890)0 production where K*(890)0→K+π− and KS0π0. (3) π−p→ΛK*(1420)0 and ΛK*(1300)0: K*(1420)0 density-matrix elements satisfying positivity constraints are determined allowing for s-wave interference effects. Evidence of the existence of a narrow K*(1300)0→Kππ with a dominant K+ρ− decay mode is observed in the 4.5- and 6-GeV/c data. (4) Σ(1385), Λ(1405), Λ(1520) production: Differential cross sections for the quasi-two-body reactions π−p→Y0K0, where Y0 is Λ(1405), Λ(1520), or Σ(1385)0, are presented and found to have a very similar flat slope in the forward direction. Data for forward K+ scattering in the reaction π−p→Σ(1385)−K+ are presented and discussed. It is argued that this forward peak cannot be explained by kinematic reflection or an s-channel effect and therefore must be due to either two-particle exchange or a single exotic exchange in the t channel.

39 data tables match query

No description provided.

No description provided.

FIT FOR FORWARD CROSS SECTION AND SLOPE.

More…

Topological, Total and Elastic Cross-sections for $K^+ p$, $\pi^+ p$ and $p p$ Interactions at 147-{GeV}/$c$

Brick, D. ; Rudnicka, H. ; Shapiro, A.M. ; et al.
Phys.Rev.D 25 (1982) 2794, 1982.
Inspire Record 11840 DOI 10.17182/hepdata.4111

The Fermilab hybrid 30-in. bubble-chamber spectrometer was exposed to a tagged 147-GeV/c positive beam containing π+, K+, and p. A sample of 3003 K+p, 19410 pp, and 20745 π+p interactions is used to derive σn, 〈n〉, f2cc, and 〈nc〉D for each beam particle. These values are compared to values obtained at other, mostly lower, beam momenta. The overall dependence of 〈n〉 on Ea, the available center-of-mass energy, for these three reactions as well as π−p and pp interactions has been determined.

13 data tables match query

No description provided.

No description provided.

No description provided.

More…

STUDY OF THE DIFFERENTIAL CROSS-SECTION FOR THE REACTION K(L) p ---> K(S) p BETWEEN 5 AND 10-GeV/c INCIDENT MOMENTUM

Mugge, Marshall ; McQuate, David ; Morse, Robert ; et al.
Phys.Rev.D 20 (1979) 2105-2112, 1979.
Inspire Record 147369 DOI 10.17182/hepdata.4406

We discuss a measurement of the differential cross section for the reaction KLp→KSp for incident momenta between 5 and 10 GeV/c and the |t| region 0.025 to 0.5 (GeV/c)2, carried out using the SLAC 15-in. rapid-cycling hydrogen bubble chamber triggered by the K0 spectrometer facility. This hybrid detector allowed measurement of the KL beam momentum, measurement of the recoil-proton momentum, and measurement of the decay position and momentum of the KS. Over this momentum region the ratio of the real to imaginary part of the forward-scattering amplitude was determined to be 0.93±0.24 and the phase of the forward-scattering amplitude was determined to be -(138±7)°. A fit to the forward differential cross section of the form dσdt∝p2α(t)−2 to our data together with previous measurements of the KLp→KSp differential cross section at this and lower momenta yielded an α(0)=0.39±0.10 for the dominant ω Regge trajectory. The value of α(0) as determined from the phase φ=−π[α(0)+1]2 is 0.54±0.11.

4 data tables match query

No description provided.

FORWARD CROSS SECTION AND OPTICAL THEOREM USED TO DETERMINE PHASE OF FORWARD AMPLITUDE. RE(AMP)/IM(AMP) IS REAL(AMP)/IMAG(AMP).

No description provided.

More…

DIFFERENTIAL CROSS-SECTION OF THE pi+ p ---> K+ SIGMA+ (1385) REACTION AT 12-GeV/c

The Dubna-Serpukhov-Baku-Bratislava-Kosice-Minsk-Samarkand-Tbilisi collaboration Bitsadze, G.S. ; Budagov, Yu.A. ; Vinogradov, V.B. ; et al.
JINR-P1-84-658, 1984.
Inspire Record 207769 DOI 10.17182/hepdata.9877

None

7 data tables match query

Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).

Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).

No description provided.

More…

Hadron - Nucleus Scattering at 70-GeV/c, 125-GeV/c and 175-GeV/c and a High Statistics Study of Hadron - Proton Elastic Scattering at 200-GeV/c

Schiz, Alan M. ; Sandweiss, Jack ;
FERMILAB-THESIS-1979-17, 1979.
Inspire Record 147258 DOI 10.17182/hepdata.155

Results of two studies of small angle elastic scattering are presented. The first experiment measured hadron-nucleus elastic scattering at 70, 125, 175 GeV/c incident momentum. The second experiment is a high statistics study of hadron-proton elastic scattering at 200 GeV/c incident momentum. Hadron-nucleus elastic scattering was measured for $\mu^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ scatterinq from Be, C, Al, Cu, Sn, and Pb targets at .incident beam momenta of 70 and 175 GeV/c and for $\mu^+$, $K^+$, and $p$ scattering from Be, Al, and Pb targets at an incident beam momentum of 125 GeV/c. In all cases the minimum -t is 0.001 $(GeV/c)^2$ ; the maximum -t is 0.07, 0.16. 0.30 ($GeV/c)^2$ for incident beam momenta of 70, 125, 175 GeV/c respectively. Parameterizations of the differential cross section, $d\sigma/dt$, in the forward direction are presented....

111 data tables match query

X ERROR D(P)/P = 0.1000 PCT.

X ERROR D(P)/P = 0.1000 PCT.

X ERROR D(P)/P = 0.1000 PCT.

More…