Two-pion Bose-Einstein correlations in pp collisions at sqrt(s)=900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U. ; et al.
Phys.Rev.D 82 (2010) 052001, 2010.
Inspire Record 860477 DOI 10.17182/hepdata.55128

We report on the measurement of two-pion correlation functions from pp collisions at $\sqrt{s}=900$ GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the HBT radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at RHIC and at Tevatron, is not manifest in our data.

36 data tables match query

Two-particle correlation functions for like-sign and unlike sign pion pairs.

Two-particle correlation functions for like-sign and unlike sign pion pairs.

Two-particle correlation functions for like-sign and unlike sign pion pairs.

More…

First proton--proton collisions at the LHC as observed with the ALICE detector: measurement of the charged particle pseudorapidity density at sqrt(s) = 900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U ; et al.
Eur.Phys.J.C 65 (2010) 111-125, 2010.
Inspire Record 838352 DOI 10.17182/hepdata.53751

On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |$\eta$| < 0.5, we obtain dNch/deta = 3.10 $\pm$ 0.13 (stat.) $\pm$ 0.22 (syst.) for all inelastic interactions, and dNch/deta = 3.51 $\pm$ 0.15 (stat.) $\pm$ 0.25 (syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN SppS collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

2 data tables match query

Pseudorapidity dependence of DN/DETARAP in Inelastic (INEL) and Non-Single-Diffractive (NSD) collisions. Note that the plot in the paper shows only statistical errors.

Pseudorapidity density for |ETARAP|<0.5 for Inelastic (INEL) and Non-Single-Diffractive (NSD) collisions.


Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

2 data tables match query

The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.

The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).


Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

23 data tables match query

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.

More…

Transverse momentum spectra of charged particles in proton-proton collisions at $\sqrt{s} = 900$~GeV with ALICE at the LHC

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U. ; et al.
Phys.Lett.B 693 (2010) 53-68, 2010.
Inspire Record 860416 DOI 10.17182/hepdata.56032

The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at $\sqrt{s} = 900$ GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region $(|\eta|<0.8)$ over the transverse momentum range $0.15<p_{\rm T}<10$ GeV/$c$. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for $|\eta|<0.8$ is $\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$ and $\left<p_{\rm T}\right>_{\rm NSD}=0.489\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$, respectively. The data exhibit a slightly larger $\left<p_{\rm T}\right>$ than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.

15 data tables match query

Average transverse momentum, including extrapolation to PT=0, for inelastic (INEL) events.

Average transverse momentum, including extrapolation to PT=0, for non-single diffractive (NSD) events.

Power law fit to spectrum for PT > 3 GeV.

More…

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 7 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 345-354, 2010.
Inspire Record 852264 DOI 10.17182/hepdata.54795

The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy $\sqrt{s} = 7$ TeV, were measured in the central pseudorapidity region |$\eta$| < 1. Comparisons are made with previous measurements at $\sqrt{s}$ = 0.9 TeV and 2.36 TeV. At $\sqrt{s}$ = 7 TeV, for events with at least one charged particle in |$\eta$| < 1, we obtain dNch/deta = 6.01 $\pm$ 0.01 (stat.) $^{+0.20}_{-0.12}$ (syst.). This corresponds to an increase of 57.6% $\pm$ 0.4% (stat.) $^{+3.6}_{-1.8}$% (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.

6 data tables match query

Charged-particle pseudorapidity densities at central pseudorapidity (ETRAP from -1.0 to 1.0) for the INEL>0 class of events. Data are also given for the lower energy ALICE data.

Relative increase in pseudorapidity density between the different energies.

Multiplicity distribution normalized to the bin width in the pseudorapidity region -1.0 to 1.0 for INEL>0 collisions at a centre-of-mass energy of 7000 GeV. See the paper arXiv:1004.3034 for the lower energy data. Note that the statistical as well as the systematic uncertainties are strongly correlated between neighbouring points. See text of paper for details.

More…

Production of pions, kaons and protons in pp collisions at sqrt(s)= 900 GeV with ALICE at the LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 71 (2011) 1655, 2011.
Inspire Record 885104 DOI 10.17182/hepdata.57568

The production of $\pi^+$, $\pi^-$, $K^+$, $K^-$, p, and pbar at mid-rapidity has been measured in proton-proton collisions at $\sqrt{s} = 900$ GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_{\rm T}$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_{\rm T}$ = 100 MeV/$c$ to 2.5 GeV/$c$. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_{\rm T}$ are compared with previous measurements, and the trends as a function of collision energy are discussed.

4 data tables match query

Transverse momentum spectra for positive and negative pions.

Transverse momentum spectra for positive and negative kaons.

Transverse momentum spectra for protons and antiprotons.

More…

Search for supersymmetry in events with photons, bottom quarks, and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 719 (2013) 261-279, 2013.
Inspire Record 1198427 DOI 10.17182/hepdata.9959

A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. A total of 7 candidate events are observed while 7.5 pm 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.

6 data tables match query

Missing ET distribution.

Signal Point Information: (1) Number of Monte Carlo events generated (2) Total signal cross section (pb) (3) Signal acceptance (4) Relative uncertainty on acceptance (5) CLs expected (6) CLs observed.

The observed limit contour in the GLUINO-NEUTRALINO plane.

More…

Search for doubly-charged Higgs bosons in like-sign dilepton final states at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 72 (2012) 2244, 2012.
Inspire Record 1191430 DOI 10.17182/hepdata.40316

A search for doubly-charged Higgs bosons decaying to pairs of electrons and/or muons is presented. The search is performed using a data sample corresponding to an integrated luminosity of 4.7 fb-1 of pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC. Pairs of prompt, isolated, high-pT leptons with the same electric charge (ee, emu, mumu) are selected, and their invariant mass distribution is searched for a narrow resonance. No significant excess over Standard Model background expectations is observed, and limits are placed on the cross section times branching ratio for pair production of doubly-charged Higgs bosons. The masses of doubly-charged Higgs bosons are constrained depending on the branching ratio into these leptonic final states. Assuming pair production, coupling to left-handed fermions, and a branching ratio of 100% for each final state, masses below 409 GeV, 375 GeV, and 398 GeV are excluded for ee, emu, mumu, respectively.

2 data tables match query

The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to left-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.

The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to right-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.


Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}$ = 8 TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 032009, 2016.
Inspire Record 1397637 DOI 10.17182/hepdata.18108

The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for $t\bar{t}$ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-$k_t$ jet with radius parameter $R=1.0$ and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

10 data tables match query

Fiducial particle-level differential cross-section, with statistical and systematic uncertainties, as a function of the top-jet candidate p_T.

Parton-level differential cross-section, with statistical and systematic uncertainties, as a function of the hadronically decaying top quark p_T.

The individual systematic uncertainties calculated as a percentage of the particle-level differential cross-section $d\sigma_{tt} / d p_{T,ptcl}$ in each bin. Variations on the two sides ("UP" and "DOWN") are separately quoted with their respective signs. Uncertainties smaller than 0.1% are neglected.

More…