p p elastic scattering polarization transfer K(onno) and depolarization D(onon) between 1.94-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Eur.Phys.J.C 5 (1998) 453-460, 1998.
Inspire Record 481194 DOI 10.17182/hepdata.43094

A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and

27 data tables match query

No description provided.

No description provided.

No description provided.

More…

Direct Experimental Reconstruction of the $P P$ Elastic Scattering Amplitudes Between 447-{MeV} and 579-{MeV}

Hausammann, R. ; Heer, E. ; Hess, R. ; et al.
Phys.Rev.D 40 (1989) 22-34, 1989.
Inspire Record 285139 DOI 10.17182/hepdata.23146

A direct experimental reconstruction of the five complex pp elastic-scattering amplitudes has been performed at 447, 497, 517, 539, and 579 MeV. The reconstruction is done over the c.m. angles from 38° to 90° and is based on either 11 or 15 spin observables depending on the angular range. The reconstructed amplitudes are presented and compared to phase-shift analysis. A smooth energy behavior is observed for the amplitudes.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

Direct Experimental Reconstruction of the $P P$ Elastic Scattering Matrix at 579-{MeV}

Aprile, E. ; Eisenegger, C. ; Hausammann, R. ; et al.
Phys.Rev.Lett. 46 (1981) 1047-1050, 1981.
Inspire Record 169865 DOI 10.17182/hepdata.20658

We have made, for the first time, a direct reconstruction of the pp elastic-scattering matrix at 579 MeV from a series of experiments performed at the Schweizerisches Institut für Nuklearforschung polarized-beam line. Fifteen observables consisting of the polarization, two-spin correlation and transfer parameters, and three-spin parameters were measured at seven angles between 66° and 90° (c. m.). The experimental results and reconstructed amplitudes are presented and compared to phase shift analysis.

2 data tables match query

No description provided.

VALUES OF PRECESSION ANGLE O. OBSERVABLES ARE RELATED BY THE FORMULA, (OABC) = (S'ABC)*COS(O) + (K'ABC)*SIN(O).


Measurements of Triple and Double Spin Parameters in Elastic $p p$ Scattering at 6-{GeV}/$c$

Auer, I.P. ; Chalmers, J. ; Colton, E. ; et al.
Phys.Rev.D 32 (1985) 1609, 1985.
Inspire Record 213562 DOI 10.17182/hepdata.23547

Toward the goal of experimentally determining the p-p elastic-scattering amplitudes at 6 GeV/c, we have measured a number of triple- and double-spin correlation parameters over the ‖t‖ range between 0.2 and 1.0 (GeV/c)2. These new data permit the first nucleon-nucleon amplitude determination in the multi-GeV energy range. Polarized beams from the Argonne Zero Gradient Synchrotron and polarized targets were utilized. The polarization of the recoil proton was measured with a carbon polarimeter. A total of 14 different spin observables were measured (five spin transfer, four depolarization, and five triple-spin correlation parameters). These have been combined with earlier results, resulting in a data set of typically 30 measurements of 20 different spin observables for each of six ‖t‖ values between 0.2 and 1.0 (GeV/c)2. A solution for the amplitudes has been found at each ‖t‖, and comparisons are presented with several different models. The spin-nonflip helicity amplitudes are found to be much larger than the spin-flip amplitudes.

2 data tables match query

No description provided.

No description provided.


Measurement of the Parameters $N$(0skn), $D$(0n0n) and $K$(0sk0) in $P P$ Elastic Scattering Between 0.84-{GeV} and 2.1-{GeV}

Lac, C.D. ; Ball, J. ; Bystricky, J. ; et al.
Nucl.Phys.B 321 (1989) 269-283, 1989.
Inspire Record 284690 DOI 10.17182/hepdata.33254

The spin-dependent observables N 0 s ″ kn , D 0 n 0 n and K 0 s ″ k 0 in pp elastic scattering were measured at nine energies between 0.84 and 2.1 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The beam polarization was oriented longitudinally and the target polarization was oriented vertically. Precession of the recoil particle spin in the target holding field introduces a small contribution from other parameters. The present results for K 0 s ″ k 0 and D 0 n 0 n agree with our previous measurements of the same observables carried out in different beam and target spin configurations as well as with previously existing measurements. The observable N 0 s ″ kn had not been measured previously above 0.58 GeV. Below 1.3 GeV our data are compared with the predictions of the Saclay-Geneva phase shift analysis. The new results will considerably affect the phase shift analysis solutions and will contribute to their extension towards higher energies.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the Spin Correlation Parameters A(00kk) and A(00sk) in $P P$ Elastic Scattering From 0.88-{GeV} to 2.4-{GeV}

Fontaine, J.M. ; Perrot, F. ; Bystricky, J. ; et al.
Nucl.Phys.B 321 (1989) 299-310, 1989.
Inspire Record 284692 DOI 10.17182/hepdata.33222

The spin correlation parameters A 00 kk and A 00 sk were measured at 0.874, 0.934, 1.095, 1.295, 1.596, 1.796, 2.096, and 2.396 GeV, using the SATURNE II polarized proton beam and tha Saclay frozen spin polarized target. The present results for beam-target spin correlations obtained during measurements of three-spin index observables confirm, in particular, relatively large positive values of A 00 sk at certain energies and angles, as was shown in previously published data from a dedicated experiment.

16 data tables match query

No description provided.

No description provided.

No description provided.

More…

Angular dependence of p p spin correlation and rescattering observables between 1.80-GeV and 2.10-GeV.

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Eur.Phys.J.C 1 (1998) 131-138, 1998.
Inspire Record 465999 DOI 10.17182/hepdata.43398

A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to determine the spin correlation parameter Aoosk and the rescattering observablesKos″ so; Dos″ok, Nos″sn, andNonsk at 1.80 and 2.10 GeV. The beam polarization was oriented perpendicular to the beam direction in the horizontal scattering plane and the target polarization was directed either along the vertical axis or longitudinally. Left-right and up-down asymmetries in the second scattering were measured. A check for the beam optimization with the beam and target polarizations oriented vertically provided other observables, of which results forDonon andKonno at 1.80, 1.85, 2.04, and 2.10 GeV are listed here. The new data at 2.10 GeV suggest a smooth energy dependence of spin triplet scattering amplitudes at fixed angles in the vicinity of this energy.

13 data tables match query

Spin correlation parameter CSL measured with the beam polarisation measuredalong the +-S direction and the target polarisation along the +-L axis. Additional 4.3 PCT systematic normalisation uncertainty.

Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.

Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.

More…

Measurement of the Parameters $D$(0n0n) and $K$(0nn0) in $P P$ Elastic Scattering Between 0.84-{GeV} and 2.7-{GeV}

Lac, C.D. ; Ball, J. ; Bystricky, J. ; et al.
Nucl.Phys.B 315 (1989) 284-294, 1989.
Inspire Record 280847 DOI 10.17182/hepdata.33259

The spin-dependent observables D 0 n 0 n and K 0 nn 0 in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen-spin polarized target. The beam and target polarizations were oriented along the normal to the scattering plane. Below 1 GeV the present data agree with previously existing measurements. Below 1.3 GeV they are compared with the predictions of the Saclay-Geneva phase-shift analysis. The results will improve the phase-shift analysis solutions and will contribute to their extension towards higher energies.

11 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the Parameters $N$(0nkk), $D$(0s0k) and $K$(0sk0) in $P P$ Elastic Scattering Between 0.84-{GeV} and 2.7-{GeV}

Lac, C.D. ; Ball, J. ; Bystricky, J. ; et al.
Nucl.Phys.B 315 (1989) 269-283, 1989.
Inspire Record 280846 DOI 10.17182/hepdata.33400

The spin-dependent observables N 0 nkk , D 0 s ″0 k and K 0 s ″ k 0 in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen-spin polarized target. The beam and target polarizations were oriented longitudinally. Precession of the recoil-particle spin in the target holding field introduces small contributions from other parameters. The present data agree with the few previously existing measurements. Below 1.3 GeV our data are compared with the predictions of the Saclay-Geneva phase-shift analysis. The new results will considerably affect the phase-shift analysis solutions and will contribute to their extension towards higher energies.

22 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the Parameters $N$(0snk), $K$(0ss0), $K$(0nn0) and $D$(0s0k) in $P P$ Elastic Scattering Between 0.84-{GeV} and 2.7-{GeV}

Lac, C.D. ; Ball, J. ; Bystricky, J. ; et al.
Nucl.Phys.B 321 (1989) 284-298, 1989.
Inspire Record 284691 DOI 10.17182/hepdata.33255

The spin dependent observables N 0s n ″ k , K 0s″s0 and D 0s″0k in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The beam polarization was oriented in the vertical plane, the target polarization was oriented along the incident beam direction. Below 1 GeV the present data agree with previously existing measurements. Below 1.3 GeV they are compared with the predictions of the Saclay-Geneva phase shift analysis. The results will improve the phase shift analysis solutions and will contribute to their extensions towards higher energies. Together with our previous results the data allow a direct reconstruction of the pp elastic matrix over the energy region from 0.84 too 2.7 GeV.

45 data tables match query

No description provided.

No description provided.

No description provided.

More…