Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

225 data tables match query

fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.

More…

Single $\pi^0$ Production Off Neutrons Bound in Deuteron with Linearly Polarized Photons

The A2 at MAMI collaboration Mullen, C. ; Gardner, S. ; Glazier, D.I. ; et al.
Eur.Phys.J.A 57 (2021) 205, 2021.
Inspire Record 1851649 DOI 10.17182/hepdata.127968

The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.

12 data tables match query

Photon beam asymmetry Sigma at W= 1.2711 GeV

Photon beam asymmetry Sigma at W= 1.2858 GeV

Photon beam asymmetry Sigma at W= 1.3003 GeV

More…

Measurement of polarization observables $\textbf{T}$, ${\textbf{P}}$, and ${\textbf{H}}$ in $\mathbf {\pi ^0}$ and $\mathbf {\eta }$ photoproduction off quasi-free nucleons

The CBELSA/TAPS collaboration Jermann, N. ; Krusche, B. ; Metag, V. ; et al.
Eur.Phys.J.A 59 (2023) 232, 2023.
Inspire Record 2712592 DOI 10.17182/hepdata.145075

The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.

4 data tables match query

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

More…

Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the STAR Experiment

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024908, 2023.
Inspire Record 2631860 DOI 10.17182/hepdata.134023

We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.

41 data tables match query

The uncorrected number of charged particles except protons ($N_{\rm ch}$) within the pseudorapidity $−2<\eta<0$ used for the centrality selection for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. The centrality classes are expressed in % of the total cross section. The lower boundary of the particle multiplicity ($N_{\rm ch}$) is included for each centrality class. Values are provided for the average number of participants ($\langle N_{\rm part}\rangle$) and pileup fraction. The fraction of pileup for each centrality bin is also shown in the last column. The averaged pileup fraction from the minimum biased collisions is determined to be 0.46%. Values in the parentheses are systematic uncertainty.

The centrality definition determined by $N_{\rm part}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV from the UrQMD model. The centrality definition is only used in the UrQMD calculation.

Main contributors to systematic uncertainty to the proton cumulant ratios: $C_2/C_1$, $C_3/C_2$,and $C_4/C_2$ from 0–5% central 3 GeV Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the dominant contribution from TPC hits, DCA, TOF $m^2$, and detector efficiency. Clearly, this analysis is systematically dominant.

More…

Exclusive Measurement of the $pp \to nn\pi^+\pi^+$ Reaction at 1.1 GeV

The CELSIUS/WASA collaboration Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Eur.Phys.J.A 47 (2011) 108, 2011.
Inspire Record 879711 DOI 10.17182/hepdata.63827

First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.

9 data tables match query

Total cross section.

Distribution of the invariant mass of the PI+PI+ system.

Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.

More…

High-precision Measurements of piP Elastic Differential Cross Sections in the Second Resonance Region

The EPECUR collaboration Alekseev, I.G. ; Andreev, V.A. ; Bordyuzhin, I.G. ; et al.
Phys.Rev.C 91 (2015) 025205, 2015.
Inspire Record 1323450 DOI 10.17182/hepdata.67659

Cross sections for pi+-p elastic scattering have been measured to high precision, for beam momenta between 800 and 1240 MeV/c, by the EPECUR Collaboration, using the ITEP proton synchrotron. The data precision allows comparisons of the existing partial-wave analyses (PWA) on a level not possible previously. These comparisons imply that updated PWA are required.

249 data tables match query

Differential cross section of elastic $\pi^+$p-scattering at P= 800.25 MeV/c. Errors shown are statistical only.

Differential cross section of elastic $\pi^+$p-scattering at P= 803.75 MeV/c. Errors shown are statistical only.

Differential cross section of elastic $\pi^+$p-scattering at P= 807.25 MeV/c. Errors shown are statistical only.

More…

MEASUREMENT OF COHERENT pi0 PHOTOPRODUCTION ON HE-3 AND H-3 IN THE RESONANCE REGION

Bellinghausen, B. ; Gassen, H.J. ; Reese, E. ; et al.
Z.Phys.A 318 (1984) 83, 1984.
Inspire Record 200794 DOI 10.17182/hepdata.50169

Neutral pion photoproduction has been measured on3He and3H nuclei in theΔ(1232) resonance region. Resonance averaged cross-sections are presented as a function of momentum transfer and compared to theoretical calculations.

1 data table match query

No description provided.


DCS for π − p elastic scattering from 1.2 to 3.0 GeV/ c and phase shift analysis

Aplin, P.S. ; Cowan, I.M. ; Gibson, W.M. ; et al.
Nucl.Phys.B 32 (1971) 253-284, 1971.
Inspire Record 1104030 DOI 10.17182/hepdata.69638

Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.

31 data tables match query

No description provided.

No description provided.

No description provided.

More…

Features of leading Lambda hyperons produced by neutrons on nuclei.

Bulekov, O.V. ; Vishnevsky, M.E. ; Vlasova, M.O. ; et al.
Phys.Atom.Nucl. 61 (1998) 74-78, 1998.
Inspire Record 444255 DOI 10.17182/hepdata.17150

None

1 data table match query

No description provided.


PHASE SHIFT ANALYSIS OF THE p p AMPLITUDES IN THE ENERGY RANGE 380-MeV TO 1000-MeV

Shklyarevsky, G.M. ;
Sov.J.Nucl.Phys. 47 (1988) 76-82, 1988.
Inspire Record 231081 DOI 10.17182/hepdata.17359
2 data tables match query

THE PHASES IN THIS TABLE WERE FIXED AT INITIAL STAGE OF PWA.

No description provided.