A Determination of Quark Weak Couplings at {PETRA} Energies

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 101 (1981) 361, 1981.
Inspire Record 164812 DOI 10.17182/hepdata.31227

Data on hadron production by e + e − annihilation at c.m. energies between 12 and 36.6 GeV have been collected using the JADE detector. They have been analysed in terms of single-photon and weak neutral-current exchange assuming production of quark-antiquark pairs with only d, u, s, c and b quarks to produce values for the quark weak neutral-current couplings. A further analysis in terms of the Glashow-Salam-Weinberg theory produced the result, sin 2 θ W = 0.22 ± 0.08 . The theory has therefore been tested in a new energy domain and within the context of the neutral weak couplings of the first, second and third generation quarks.

2 data tables match query

No description provided.

WIDTH(Z) = 2.5 GEV WAS ASSUMED. CONST(N=SIN2TW) WAS DETERMINED FROM RATIO(HADRONS/MU). FIRST ORDER QCD.


Baryon Production in e+ e- Annihilation at PETRA

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 104 (1981) 325-329, 1981.
Inspire Record 166363 DOI 10.17182/hepdata.31062

Data on p and Λ production by e + e − -annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon-antibaryon pairs is seen.

3 data tables match query

No description provided.

No description provided.

AVERAGE NUMBER OF ANTIBARYONS PER HADRONIC EVENT. AN EXPONENTIAL SLOPE OF 2.5 GEV*-1 IN E WAS ASSUMED IN EXTRAPOLATING E*D3(SIG)/DP**3 TO ALL MOMENTA.


Experimental Investigation of the Energy Dependence of the Strong Coupling Strength

The JADE collaboration Bethke, S. ; Allison, John ; Ambrus, K. ; et al.
Phys.Lett.B 213 (1988) 235-241, 1988.
Inspire Record 263579 DOI 10.17182/hepdata.29894

The energy dependence of the relative production rate of three-jet events is studied in hadronic e + e − annihilation events at center of mass energies between 22 and 46.7 GeV. Three-jet events are defined by a jet finding algorithm which is closely related to the definition of resolvable jets used in O( α s 2 ) perturbative QCD calculations, where the relative production rate of three-jet events is roughly proportional to the size of the strong coupling strength. The production rates of three-jet events in the data decrease significantly with increasing centre of mass energy. The experimental rates, which are independent of fragmentation model calculations, can be directly compared to theoretically calculated jet production rates and are in good agreement with the QCD expectations of a running coupling strength. The hypothesis of an energy independent coupling constant can be excluded with a significance of four standard derivations.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Observation of Charmed Mesons in Photon-photon Collisions

The JADE collaboration Bartel, W. ; Becker, L. ; Felst, R. ; et al.
Phys.Lett.B 184 (1987) 288-292, 1987.
Inspire Record 235696 DOI 10.17182/hepdata.30214

The inclusive production of D ∗± mesons in single tagged photon-photon collisions is investigated using the JADE detector at PETRA. D ∗± mesons are reconstructed through their decay into D 0 +π ± where the D 0 decays via D 0 →Kππ 0 . The event rate and topology are compared to the expectations of c quark production in the quark-parton model: γγ→c c .

1 data table match query

No description provided.


Exclusive Production of Proton Anti-proton Pairs in Photon-photon Collisions

The JADE collaboration Bartel, W. ; Becker, L. ; Cords, D. ; et al.
Phys.Lett.B 174 (1986) 350-356, 1986.
Inspire Record 231554 DOI 10.17182/hepdata.30246

Total and differential cross sections for exclusive production of proton-antiproton pairs in photon-photon collisions have been measured using the JADE detector at PETRA. The total cross section in the CM angular |cos θ ∗ | < 0.6 reaches a maximum value of 3.8 nb for a γγ invariant mass of W γγ = 2.25 GeV, and decreases rapidly for higher values of W γγ . In the range 2.0 GeV < W γγ < 2.6 GeV the angular distribution is not isotopic. The nucleons are preferentially emitted at large angles to the collision axis.

2 data tables match query

Data read off graph.

Data read off graph.


A Measurement of the Reaction $e^+ e^- \to e^+ e^- \eta^\prime$ and the Radiative Width $\Gamma (\eta^\prime \to \gamma \gamma$) at {PETRA}

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 113 (1982) 190-194, 1982.
Inspire Record 177090 DOI 10.17182/hepdata.30958

The reaction e + e - → e + e - η' has been observed in the JADE experiment at PETRA, by detecting the final state π + π - γ, resulting from the decay η' → γϱ 0 . The cross section was measured at an average beam energy of 17.15 GeV to be σ(e + e - → e + e - η') = 2.2 ± 0.2 (stat.) ± 0.4(syst.) nb, yielding the radiative width Γ η'γγ = 5.0 ± 0.5(stat.) ± 0.9 (syst.) keV.

1 data table match query

No description provided.


Observation of Four - Jet Structure in $e^+ e^-$ Annihilation at $\sqrt{s}=33$-{GeV}

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 115 (1982) 338-344, 1982.
Inspire Record 177210 DOI 10.17182/hepdata.30889

Topological distributions of hadrons from the reaction e + e − → hadrons are studied at center of mass energies of about 33 GeV. The experimental distributions in the parameters acoplanarity and tripodity, both sensitive to events with a four-jet structure, show significant deviations from the expectations for two- and three-jet events. They can be described well by the inclusion of four-jet events. The relative magnitude of the observed effect indicates second order QCD as its probable origin.

1 data table match query

No description provided.


Observation of a Charge Asymmetry in $e^+ e^- \to \mu^+ \mu^-$

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 108 (1982) 140-144, 1982.
Inspire Record 168234 DOI 10.17182/hepdata.31023

The angular distribution and the s dependence of the total cross section for the process e + e − → μ + μ − have been measured using the JADE detector at PETRA. After radiative corrections, a forward-backward asymmetry of −(11.8±3.8) % was observed at an average centre of mass energy of 33.5 GeV. For comparison, an asymmetry of −7.8 % is expected on the basis of the standard Glashow-Salam-Weinberg model.

5 data tables match query

Best fit to total cross section in energy range.

ANGULAR DISTRIBUTION.

Forward-backward asymmetry within the acceptnce region.

More…

Experimental Study of the Photon Structure Function F(2) in the High $Q^2$ Region

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 121 (1983) 203-208, 1983.
Inspire Record 180758 DOI 10.17182/hepdata.30781

We report on a measurement of the process e + e − →e + e − + hadrons, where one of the scattered electrons is detected at large angles, with an average Q 2 of 23 GeV. The results are analysed in terms of the photon structure function F 2 and are compared with QCD predictions.

3 data tables match query

Data read off graph.

Data read off graph.

Data read off graph.


Differential Three Jet Cross-section in $e^+ e^-$ Annihilation and Comparison With Second Order Predictions of {QCD} and Abelian Vector Theory

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 119 (1982) 239-244, 1982.
Inspire Record 180033 DOI 10.17182/hepdata.30830

Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.

2 data tables match query

FIRST ORDER QCD.

SECOND ORDER QCD.