QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables match query

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

Version 2
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 077, 2018.
Inspire Record 1635273 DOI 10.17182/hepdata.80076

This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.

86 data tables match query

Cross section for the production of W bosons for different inclusive jet multiplicities.

Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.

Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.

More…

Measurement of the $k_\mathrm{t}$ splitting scales in $Z \to \ell\ell$ events in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 08 (2017) 026, 2017.
Inspire Record 1589844 DOI 10.17182/hepdata.76966

A measurement of the splitting scales occuring in the $k_\mathrm{t}$ jet-clustering algorithm is presented for final states containing a $Z$ boson. The measurement is done using 20.2 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s} = 8$ TeV by the ATLAS experiment at the LHC in 2012. The measurement is based on charged-particle track information, which is measured with excellent precision in the $p_\mathrm{T}$ region relevant for the transition between the perturbative and the non-perturbative regimes. The data distributions are corrected for detector effects, and are found to deviate from state-of-the-art predictions in various regions of the observables.

8 data tables match query

The measured fiducial as a function of sqrt(d0). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

The measured fiducial as a function of sqrt(d1). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

The measured fiducial as a function of sqrt(d2). The fiducial cross sections are measred for the charged-only particle level in the muon channel as well as the electron channel. Extrapolations to the complete fiducial phase space including charged and neutral particles are also shown for the muon channel and the electron channel.

More…

Search for heavy long-lived charged $R$-hadrons with the ATLAS detector in 3.2 fb$^{-1}$ of proton--proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 760 (2016) 647-665, 2016.
Inspire Record 1470936 DOI 10.17182/hepdata.73717

A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

12 data tables match query

Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.

Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

More…

Search for supersymmetry at $\sqrt{s}=13$ TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 259, 2016.
Inspire Record 1424844 DOI 10.17182/hepdata.72792

A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge or at least three isolated leptons. The search also utilises $b$-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb$^{-1}$. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95% confidence level up to 1.1-1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550-850 GeV for gluino masses around 1 TeV.

24 data tables match query

Missing transverse momentum distribution after SR0b3j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$, $m_{\tilde g}=1.3$ TeV, $m_{\tilde\chi_1^0}=0.5$ TeV) is also shown.

Missing transverse momentum distribution after SR0b5j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qqWZ\tilde\chi_1^0$, $m_{\tilde g}=1.1$ TeV, $m_{\tilde\chi_1^0}=0.4$ TeV) is also shown.

Missing transverse momentum distribution after SR1b selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde b_1\tilde b_1^*$, $\tilde b_1\to tW\tilde\chi_1^0$, $m_{\tilde b_1}=600$ GeV, $m_{\tilde\chi_1^0}=50$ GeV) is also shown.

More…

Search for supersymmetry at sqrt(s)=8 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 06 (2014) 035, 2014.
Inspire Record 1289225 DOI 10.17182/hepdata.63682

A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.

106 data tables match query

Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.

Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.

Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.

More…

Measurement of $W^{\pm}$-boson and $Z$-boson production cross-sections in $pp$ collisions at $\sqrt{s}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 901, 2019.
Inspire Record 1742785 DOI 10.17182/hepdata.91267

The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.

28 data tables match query

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.

More…

Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 132, 2017.
Inspire Record 1615206 DOI 10.17182/hepdata.79497

Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The inclusive fiducial cross section in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel is measured to be 3.62 $\pm$ 0.50 (stat) $^{+0.25}_{-0.20}$ (sys) fb, in agreement with the Standard Model prediction of 2.91 $\pm$ 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework.

16 data tables match query

Measured differential fiducial cross sections in Higgs transverse momentum (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in Higgs rapidity (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in invariant mass of the subleading lepton pair (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

More…

Measurements of inclusive and differential cross-sections of combined $t\bar{t}\gamma$ and $tW\gamma$ production in the $e\mkern-2mu\mu$ channel at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2020) 049, 2020.
Inspire Record 1806806 DOI 10.17182/hepdata.94915

Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton$-$proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is $b$-tagged, are selected. The fiducial cross-section is measured to be $39.6\,^{+2.7}_{-2.3}\,\textrm{fb}$. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.

24 data tables match query

The measured fiducial cross-section in the electron-muon channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon pT in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon $|\eta|$ in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

More…

Simultaneous multiplicity and forward energy characterization of particle spectra in Au + Au collisions at 11.6-A-GeV/c.

The E-802 collaboration Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Rev.C 59 (1999) 2173-2188, 1999.
Inspire Record 501648 DOI 10.17182/hepdata.4988

In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.

48 data tables match query

Table for event classification (from CLASS1 to CLASS8) where ZCAL energy solely used for event selection. Number of Projectile Participants Npp=197*(1-E(P=3)/EKIN(P=1)).

CLASS1 (see Table for event classification).

CLASS1 (see Table for event classification).

More…