A Measurement of Differential Cross-Sections and Nucleon Structure Functions in Charged Current Neutrino Interactions on Iron

Berge, J.P. ; Burkhardt, H. ; Dydak, F. ; et al.
Z.Phys.C 49 (1991) 187-224, 1991.
Inspire Record 281286 DOI 10.17182/hepdata.1696

A high-statistics measurement of the differential cross-sections for neutrino-iron scattering in the wide-band neutrino beam at the CERN SPS is presented. Nucleon structure functions are extracted and theirQ2 evolution is compared with the predictions of quantum chromodynamics.

40 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of nucleon structure functions in neutrino scattering.

The CHORUS collaboration Onengut, G. ; van Dantzig, R. ; de Jong, M. ; et al.
Phys.Lett.B 632 (2006) 65-75, 2006.
Inspire Record 699123 DOI 10.17182/hepdata.6187

After completion of the data taking for the νμ→ντ oscillation search, the CHORUS lead–scintillator calorimeter was used in the 1998 run as an active target. High-statistics samples of charged-current interactions were collected in the CERN SPS west area neutrino beam. This beam contained predominantly muon (anti-)neutrinos from sign-selected pions and kaons. We measure the flux and energy spectrum of the incident neutrinos and compare them with beam simulations. The neutrino–nucleon and anti-neutrino–nucleon differential cross-sections are measured in the range 0.01<x<0.7 , 0.05<y<0.95 , 10<Eν<200 GeV . We extract the neutrino–nucleon structure functions F2(x,Q2) , xF3(x,Q2) , and R(x,Q2) and compare these with results from other experiments.

121 data tables match query

The measured F2 and xF3 at X = 0.020.

The measured F2 and xF3 at X = 0.045.

The measured F2 and xF3 at X = 0.080.

More…

Experimental Study of Differential Cross-sections in Charged Current Neutrino and Anti-neutrinos Interactions

The CHARM collaboration Jonker, M. ; Panman, J. ; Udo, F. ; et al.
Phys.Lett.B 109 (1982) 133-140, 1982.
Inspire Record 168613 DOI 10.17182/hepdata.6668

Inclusive neutrino and antineutrino charged-current interactions were studied using the electronic detector of the CHARM Collaboration exposed to the narrow-band beam of the CERN SPS. The relative contributions of quarks and antiquarks to the neutrino cross sections were deduced from the differential cross sectionsdσ/d y . The x and Q 2 dependence of the structure functions F 2 and F 3 were measured. Scaling violations were observed, in qualitative agreement with QCD. A value of the mass scale parameter of QCD,Λ = [0.29 ± 0.12 (stat.) ± 0.10 (syst.)] GeV, was deduced in a leading-order approximation, following the method of Buras and Gaemers.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Further observation of muonless neutrino-induced inelastic interactions.

Aubert, Bernard ; Benvenuti, A.C. ; Cline, D. ; et al.
Phys.Rev.Lett. 32 (1974) 1454-1457, 1974.
Inspire Record 882 DOI 10.17182/hepdata.21934

We report here additional positive results of a search for muonless neutrino- and anti-neutrino-induced events using an enriched antineutrino beam and a muon identifier of relatively high geometric detection efficiency. The ratio of muonless to muon event rates is observed to be R=0.20±0.05. We observe no background derived from ordinary neutrino or antineutrino interactions that is capable of explaining the muonless signal.

1 data table match query

No description provided.


CHARGED CURRENT NEUTRINO INTERACTIONS BELOW 30-GeV

Asratian, A.E. ; Bugorsky, A.P. ; Epshtein, V.Sh. ; et al.
Phys.Lett.B 76 (1978) 239-242, 1978.
Inspire Record 130941 DOI 10.17182/hepdata.26951

Charged current data of a spark chamber neutrino experiment at the 70 GeV Serpukhov accelerator (10 200 events in the v beam and 3600 events in the v beam with energies up to 30 GeV) have been analyzed. Total neutrino and antineutrino cross sections and v -distributions are obtained.

2 data tables match query

Measured charged current total cross section.

Measured charged current total cross section.


Measurement of Rates for Muonless Deep Inelastic Neutrino and anti-neutrino Interactions

Aubert, Bernard ; Benvenuti, A.C. ; Cline, D. ; et al.
Phys.Rev.Lett. 32 (1974) 1457, 1974.
Inspire Record 1123 DOI 10.17182/hepdata.21890

Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.

1 data table match query

No description provided.


Nucleon neutral current structure functions

Mattison, T.S. ; Bofill, J. ; Busza, W. ; et al.
Phys.Rev.D 42 (1990) 1311-1330, 1990.
Inspire Record 304879 DOI 10.17182/hepdata.22924

The structure of the nucleon is studied by means of deep-inelastic neutrino-nucleon scattering at high energies through the weak neutral current. The neutrino-nucleon scattering events were observed in a 340-metric-ton fine-grained calorimeter exposed to a narrow-band (dichromatic) neutrino beam at Fermilab. The data sample after analysis cuts consists of 9200 charged-current and 3000 neutral-current neutrino and antineutrino events. The neutral-current valence and sea nucleon structure functions are extracted from the x distribution reconstructed from the measured angle and energy of the recoil-hadron shower and the incident narrow-band neutrino-beam energy. They are compared to those extracted from charged-current events analyzed as neutral-current events. It is shown that the nucleon structure is independent of the type of neutrino interaction, which confirms an important aspect of the standard model. The data are also used to determine the value of sin2θW=0.238±0.013±0.015±0.010 for a single-parameter fit, where the first error is from statistical sources, the second from experimental systematic errors, and the third from estimated theoretical errors.

4 data tables match query

Neutral-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.

Neutral-current sea-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.

Charged-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.

More…

Dimuon Production by Neutrinos in the {Fermilab} 15-ft. Bubble Chamber at the Tevatron

The E632 collaboration Jain, V. ; Harris, F.A. ; Aderholz, M. ; et al.
Phys.Rev.D 41 (1990) 2057, 1990.
Inspire Record 281906 DOI 10.17182/hepdata.22938

The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Total Cross-section for Neutrino Charged Current Interactions at 3-{GeV} and 9-{GeV}

The Gargamelle Neutrino Propane & Aachen-Brussels-CERN-Ecole Poly-Orsay-Padua collaborations Ciampolillo, S. ; Degrange, B. ; Dewit, M. ; et al.
Phys.Lett.B 84 (1979) 281-284, 1979.
Inspire Record 141175 DOI 10.17182/hepdata.27322

Average total cross sections are given for neutrino charged current interactions at neutrino energies of 2.87 GeV and 9.05 GeV. The ratios 〈σ〉 〈E〉 are 0.69 ± 0.05 and 0.61 ± 0.06 in units of 10 −38 cm 2 /GeV nucleon, respectively The errors include both statistical and systematic uncertainties.

2 data tables match query

Measured charged current total cross section.

Measured charged current total cross section.


ANTI-NEUTRINO - NUCLEON TOTAL CROSS-SECTION AND RATIO OF ANTI-NEUTRINO CROSS-SECTION ON NEUTRONS AND PROTONS

Erriquez, O. ; Fogli-Muciaccia, M.T. ; Natali, S. ; et al.
Phys.Lett.B 80 (1979) 309-313, 1979.
Inspire Record 143176 DOI 10.17182/hepdata.27366

On a selected sample of 2171 events, observed in the big heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined up to the laboratory energy E v ̄ = 8 GeV . The total cross section is found to be a linear function of the antineutrino energy expressed by σ tot (E v ̄ ) = (0.26 ± 0.020) × 10 −38 × E v ̄ ( GeV ) cm 2 . The energy dependence of 〈q 2 〉 v ̄ is found to be given by 〈q 2 〉 v ̄ = (0.15 ± 0.04)E v ̄ + (0.05 ± 0.12) ( GeV /c) 2 . With a simplified nuclear model the ratio of cross sections on neutrons andprotons has been estimated as a function of energy and for two different values of the scaling variable x . The results are compared with the prediction of the naive quark parton model.

1 data table match query

Measured charged current total cross section.