Search for production of a single vector-like quark decaying to tH or tZ in the all-hadronic final state in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-19-001, 2024.
Inspire Record 2784426 DOI 10.17182/hepdata.144172

A search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$ The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Event kinematics and the presence of jets containing b hadrons are used to reconstruct the hadronic decays of the t quark and H or Z boson. No significant deviation from the standard model prediction is observed in the data. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV.

53 data tables match query

Five-jet invariant mass distributions in the 2M1L region after the high-mass (green crosses) and low-mass (black circles) selections in 2018 dataset. The low-mass selection results in a mass distribution that is smoothly falling, unlike the high-mass selection. The high-mass selection is more efficient for signal T masses above 700 GeV.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 2M1L and 3M regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 3M and 3T regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

More…

Measurement and interpretation of same-sign $W$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 04 (2024) 026, 2024.
Inspire Record 2729396 DOI 10.17182/hepdata.141650

This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.

30 data tables match query

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.

Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.

More…

Version 2
Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

31 data tables match query

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…

Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 132 (2024) 172302, 2024.
Inspire Record 2725922 DOI 10.17182/hepdata.150695

This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of $1.4 < |\Delta\eta| < 1.8$ and a transverse momentum of $1 < p_{\rm T} < 2$ GeV/$c$, as a function of the charged-particle multiplicity measured at midrapidity. This study extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly-interacting medium is unlikely to be formed. The precision of the new results allows for the first direct quantitative comparison with the results obtained in $\mathrm {e^{+}e^{-}}$ collisions at $\sqrt{s}$ = 91 GeV, where initial-state effects such as pre-equilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range where the $\mathrm {e^{+}e^{-}}$ results have good precision, the measured ridge yields in pp collisions are substantially larger than the limits set in $\mathrm {e^{+}e^{-}}$ annihilations. Consequently, the findings presented in this Letter suggest that the processes involved in $\mathrm {e^{+}e^{-}}$ annihilations do not contribute significantly to the emergence of long-range correlations in pp collisions.

1 data table match query

Ridge yield $Y_\mathrm{ridge}$ extracted at $1.4<|\Delta\eta|<1.8$ with $1.0<p_\mathrm{T,trig}<2.0\,\mathrm{GeV}/c$, $1.0<p_\mathrm{T,assoc}<2.0\,\mathrm{GeV}/c$ as a function of charged particle multiplicity counted at midrapidity $|\eta|<1.0$. The first three points at $N_\mathrm{ch}<8$ represent a 95% upper confidence limit where the statistical and systematic uncertainty have been combined.


Observation of abnormal suppression of $\mathrm{f}_{0}$(980) production in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 853 (2024) 138665, 2024.
Inspire Record 2724206 DOI 10.17182/hepdata.151390

The dependence of $\mathrm{f}_{0}$(980) production on the final-state charged-particle multiplicity in p$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is reported. The production of $\mathrm{f}_{0}$(980) is measured with the ALICE detector via the $\mathrm{f}_0 (980) \rightarrow \pi^{+}\pi^{-}$ decay channel in a midrapidity region of $-0.5<y<0$. Particle yield ratios of $\mathrm{f}_{0}$(980) to $\pi$ and $\mathrm{K}^{*}$(892)$^{0}$ are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the $\mathrm{f}_{0}$(980)/$\pi$ and $\mathrm{f}_{0}$(980)/$\mathrm{K}^{*}$(892)$^{0}$ yield ratios is found to be dependent on the transverse momentum $p_{\mathrm{T}}$, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor $Q_{\mathrm{pPb}}$ of $\mathrm{f}_{0}$(980) is measured in various multiplicity ranges. The $Q_{\mathrm{pPb}}$ shows a strong suppression of the $\mathrm{f}_{0}$(980) production in the $p_{\mathrm{T}}$ region up to about 4 GeV/$c$. The results on the particle yield ratios and $Q_{\mathrm{pPb}}$ for $\mathrm{f}_{0}$(980) may help to understand the late hadronic phase in p$-$Pb collisions and the nature of the internal structure of $\mathrm{f}_{0}$(980) particle.

7 data tables match query

Transverse momentum spectra in different multiplicity classes. Each spectrum is corrected for the branching ratio of (46 $\pm$ 6)% based on [Phys. Rev. Lett. 111 no. 6, (2013) 062001].

The ratio of transverse momentum spectrum to the NSD spectrum

The double ratio of particle yield of f0((980) to charged pions

More…

Version 2
Observation of the $\Upsilon$(3S) meson and suppression of $\Upsilon$ states in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIN-21-007, 2023.
Inspire Record 2648528 DOI 10.17182/hepdata.130959

The production of $\Upsilon$(2S) and $\Upsilon$(3S) mesons in lead-lead (PbPb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The $\Upsilon$(3S) meson is observed for the first time in PbPb collisions, with a significance above five standard deviations. The ratios of yields measured in PbPb and pp collisions are reported for both the $\Upsilon$(2S) and $\Upsilon$(3S) mesons, as functions of transverse momentum and PbPb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of $\Upsilon$ yields in PbPb collisions. This suppression increases from peripheral to central PbPb collisions. Furthermore, the suppression is stronger for $\Upsilon$(3S) mesons compared to $\Upsilon$(2S) mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the $\psi$/J, $\psi$(2S), $\Upsilon$(1S), and $\Upsilon$(2S) mesons.

14 data tables match query

Measured $R_\text{AA}$ for the $\Upsilon(2S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.

Measured $R_\text{AA}$ for the $\Upsilon(3S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 3S" corresponds to the uncertainty on the $\Upsilon(3S)$ pp yields.

Measured $R_\text{AA}$ for the$\Upsilon(2S)$ state in the 0–90% centrality interval, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.

More…

Search for flavour-changing neutral-current couplings between the top quark and the Higgs boson in multi-lepton final states in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-070, 2024.
Inspire Record 2773613 DOI 10.17182/hepdata.150998

A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.

46 data tables match query

Post-fit plot of $H_\text{T}(\text{jets})$ in the SR$2\ell$ Dec from a signal-blinded background-only fit.

Post-fit plot of $m(t_\text{SM}, b\text{-jet}_0)$ in the SR$2\ell$ Prod from a signal-blinded background-only fit.

Post-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Dec from a signal-blinded background-only fit.

More…

Combination of searches for resonant Higgs boson pair production using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2023-271, 2023.
Inspire Record 2726938 DOI 10.17182/hepdata.145876

A combination of searches for resonant Higgs boson pair production is presented, using up to 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: $b\bar{b}b\bar{b}$, $bb\tau^+\tau^-$ and $bb\gamma\gamma$. No excess above the expected background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV. The observed (expected) limits are in the range 0.96-600 fb (1.2-390 fb). The limits are interpreted in the Type-I Two-Higgs-Doublet Model and the Minimimal Supersymmetric Standard Model, and constrain parameter space not previously excluded by other searches.

3 data tables match query

Local p-value as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.

Observed significance as a function of the resonance $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.

Observed and expected upper limits at the 95% CL on the resonant Higgs boson pair production cross section as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.


Measurement of $t$-channel production of single top quarks and antiquarks in $pp$ collisions at 13 TeV using the full ATLAS Run 2 data sample

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-289, 2024.
Inspire Record 2764820 DOI 10.17182/hepdata.150693

The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.

21 data tables match query

The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.

The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.

The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)

More…

Version 2
Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-23-014, 2024.
Inspire Record 2760892 DOI 10.17182/hepdata.146759

An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.

60 data tables match query

Efficiencies of the various displaced dimuon trigger paths and their combination as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the detector acceptance and the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.

Overall efficiencies in the STA-STA (green) and TMS-TMS (red) dimuon categories, as well as their combination (black) as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The solid curves show efficiencies achieved with the 2022 Run 3 triggers, whereas dashed curves show efficiencies for the subset of events selected by the triggers used in the 2018 Run 2 analysis. The efficiency is defined as the fraction of signal events that satisfy the criteria of the indicated trigger as well as the full set of offline selection criteria. The lower panel shows the relative improvement of the overall signal efficiency brought in by improvements in the trigger.

Comparison of the observed (black points) and expected (histograms) numbers of events in nonoverlapping $m_{\mu \mu}$ intervals in the STA-STA dimuon category, in the signal region optimized for the HAHM model. Yellow and green stacked filled histograms represent mean expected background contributions from QCD and DY, respectively, while statistical uncertainties in the total expected background are shown as hatched histograms. Signal contributions expected from simulated signals indicated in the legends are shown in red and blue. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.

More…