Parity violation in elastic electron proton scattering and the proton's strange magnetic form-factor.

The SAMPLE collaboration Spayde, D.T. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.Lett. 84 (2000) 1106-1109, 2000.
Inspire Record 507265 DOI 10.17182/hepdata.31230

We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.

1 data table match query

Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.


Measurement of the neutral weak form factors of the proton.

The HAPPEX collaboration Aniol, K.A. ; Armstrong, D.S. ; Baylac, M. ; et al.
Phys.Rev.Lett. 82 (1999) 1096-1100, 1999.
Inspire Record 478059 DOI 10.17182/hepdata.31319

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

1 data table match query

Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.


Measurement of the proton's neutral weak magnetic form factor.

The SAMPLE collaboration Mueller, B. ; Beck, D.H. ; Beise, E.J. ; et al.
Phys.Rev.Lett. 78 (1997) 3824-3827, 1997.
Inspire Record 440739 DOI 10.17182/hepdata.31349

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M~Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05$ n.m. at $Q~2=0.1$ (GeV/c)${}~2$.

1 data table match query

Polarized beam. FORMFACTOR(NAME=GZM) = (1/4)*(GM_P-GM_N) - SIN2TW*GM_P - (1/4)*GM_S, whereFORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GZM) and FORMFACTOR(NAME=GM_S) are in nucleon magnetic FF.


Measurement of the $dp \rightarrow {^3He}}\eta$ reaction near threshold\author{J. Smyrski\corauthref{corr}

Smyrski, J. ; Adam, H.-H. ; Budzanowski, A. ; et al.
Phys.Lett.B 649 (2007) 258-262, 2007.
Inspire Record 745085 DOI 10.17182/hepdata.31470

Total and differential cross sections for the dp --> 3He eta reaction have been measured near threshold for 3He center-of-mass momenta in the range from 17.1 MeV/c to 87.5 MeV/c. The data were taken during a slow ramping of the COSY internal deuteron beam scattered on a proton target detecting the 3He ejectiles with the COSY-11 facility. The forward-backward asymmetries of the differential cross sections deviate clearly from zero for center-of-mass momenta above 50 MeV/c indicating the presence of higher partial waves in the final state. Below 50 MeV/c center-of-mass momenta a fit of the final state enhancement factor to the data of the total cross sections results in the 3He eta scattering length of a = |2.9 +/- 0.6| + i (3.2 +/- 0.4) fm.

1 data table match query

Forward-Backward asymmetry for the reaction DEUT P --> HE3 ETA.


NUCLEAR REACTIONS OF TANTALUM WITH 3.65-A/GeV C-12 IONS AND 3.65-GeV PROTONS

Kozma, P. ; Damdinsuren, C. ; Chultem, D. ; et al.
J.Phys.G 17 (1991) 675-690, 1991.
Inspire Record 281499 DOI 10.17182/hepdata.38565

The cross sections of a number of target residues formed in the reactions of 3.65 A GeV 12C ions and 3.65 GeV protons with tantalum have been measured. The measurements have been done by direct counting of irradiated targets with a Ge(Li) gamma-ray spectrometer. Charge dispersions and mass-yield distributions were deduced from these data. The results are discussed in terms of the basic concepts of high-energy nuclear physics. They are also compared with intranuclear cascade and abrasion-ablation model calculations.

1 data table match query

No description provided.