Version 2
Measurement of the energy asymmetry in $t\bar{t}j$ production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 374, 2022.
Inspire Record 1941095 DOI 10.17182/hepdata.111348

A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 $\mathrm{fb}^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic $t\bar{t}$ decay channel, and the hadronically decaying top quark must have transverse momentum above $350$ GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be $-0.043\pm0.020$, in agreement with the SM prediction of $-0.037\pm0.003$. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits.

10 data tables match query

Data Measurements and predictions of the energy asymmetry in three bins of the jet angle $\theta_j$. The SM prediction was obtained from simulations of $t\bar{t}j$ events with MadGraph5_aMC@NLO + Pythia 8 at NLO in QCD for $t\bar{t}j$ + PS, including MC statistical and scale uncertainties.

Data measurements and predictions of the energy asymmetry in three bins of the jet angle $\theta_j$. The SM prediction was obtained from simulations of $t\bar{t}j$ events with MadGraph5_aMC@NLO + Pythia 8 at NLO in QCD for $t\bar{t}j$ + PS, including MC statistical and scale uncertainties.

Correlation coefficients $\rho_{i,j}$ for the statistical and systematic uncertainties between the $i$-th and $j$-th bin of the differential $A_E$ measurement as a function of the jet scattering angle $\theta_j$

More…

Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 103 (2021) L091103, 2021.
Inspire Record 1850855 DOI 10.17182/hepdata.104836

We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.

5 data tables match query

Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $0.5<|\eta|<1$.

Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $|\eta|<0.5$.

Parton dijet invariant mass $M_{inv}$ and $A_{LL}$ values with associated uncertainties for the $\textrm{sign}(\eta_1) = \textrm{sign}(\eta_2)$ topology.

More…

Transverse momentum dependent forward neutron single spin asymmetries in transversely polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 032007, 2021.
Inspire Record 1834002 DOI 10.17182/hepdata.106656

In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.

4 data tables match query

Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding

Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding

More…

W and Z boson production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 02 (2017) 077, 2017.
Inspire Record 1496634 DOI 10.17182/hepdata.77359

The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson production cross section, with dimuon invariant mass of $60<m_{\mu\mu}<120$ GeV/$c^2$ and muon transverse momentum ($p_{\rm T}^\mu$) larger than 20 GeV/$c$, is measured. The production cross section and charge asymmetry of muons from W-boson decays with $p_{\rm T}^\mu>10$ GeV/$c$ are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.

1 data table match query

Lepton charge asymmetry of muons from W-boson decays at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.


Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

4 data tables match query

Di-jet A_LL asymmetry vs parton-level invariant mass for the same-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

Theoretical predictions for the di-jet A_LL asymmetry for the same-sign topology using the DSSV14 and NNPDFpol1.1 polarized PDF sets. The DSSV14 prediction is presented without uncertainty while the systematic uncertainty on the NNPDFpol1.1 prediction contains contributions from factorization and renormalization scale uncertainties and PDF uncertainties.

Di-jet A_LL asymmetry vs parton-level invariant mass for the opposite-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

More…

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

1 data table match query

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Measurement of the forward-backward asymmetries in the production of $\Xi$ and $\Omega$ baryons in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 112001, 2016.
Inspire Record 1457606 DOI 10.17182/hepdata.78545

We measure the forward-backward asymmetries $A_{\rm FB}$ of charged $\Xi$ and $\Omega$ baryons produced in $p \bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV as a function of the baryon rapidity $y$. We find that the asymmetries $A_{\rm FB}$ for charged $\Xi$ and $\Omega$ baryons are consistent with zero within statistical uncertainties.

1 data table match query

Forward-backward asymmetry $A_{\rm FB}$ of $\Xi^\mp$ baryons with $p_T > 2$ GeV in minimum bias events, $p\bar{p} \rightarrow \Xi^\mp X$, and muon events $p \bar{p} \rightarrow \mu \Xi^\mp X$, and $A_{\rm FB}$ of $\Omega^-$ and $\Omega^+$ baryons with $p_T > 2$ GeV in muon events $p \bar{p} \rightarrow \mu \Omega^\mp X$. The first uncertainty is statistical, the second is systematic due to the detector asymmetry $A'_{\rm NS} A'_\Xi$.


Measurement of $\sin^2\theta^{\rm lept}_{\rm eff}$ using $e^+e^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112016, 2016.
Inspire Record 1456804 DOI 10.17182/hepdata.78542

At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.

1 data table match query

Fully corrected $A_{fb}$ measurement for electron pairs with $|y|<1.7$. The measurement uncertainties are bin-by-bin unfolding estimates.


Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112005, 2016.
Inspire Record 1424841 DOI 10.17182/hepdata.77054

We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96~\mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~\rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($\Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{\text{FB}}^{t\bar{t}} = 0.12 \pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{\text{FB}}^{t\bar{t}}$ in both final states yields $A_{\text{FB}}^{t\bar{t}}=0.160\pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $\Delta y$. A linear fit to $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$, assuming zero asymmetry at $\Delta y=0$, yields a slope of $\alpha=0.14\pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$ in the two final states is $\alpha=0.227\pm0.057$, which is $2.0\sigma$ larger than the SM prediction.

2 data tables match query

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the lepton+jets final state.

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the dilepton final state.


Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112003, 2016.
Inspire Record 1416824 DOI 10.17182/hepdata.77045

We report a measurement of the forward-backward asymmetry, $A_{FB}$, in $b\bar{b}$ pairs produced in proton-antiproton collisions and identified by muons from semileptonic $b$-hadron decays. The event sample was collected at a center-of-mass energy of $\sqrt{s}=1.96$ TeV with the CDF II detector and corresponds to 6.9 fb$^{-1}$ of integrated luminosity. We obtain an integrated asymmetry of $A_{FB}(b\bar{b})=(1.2 \pm 0.7)$\% at the particle level for $b$-quark pairs with invariant mass, $m_{b\bar{b}}$, down to $40$ GeV/$c^2$ and measure the dependence of $A_{FB}(b\bar{b})$ on $m_{b\bar{b}}$. The results are compatible with expectations from the standard model.

1 data table match query

Results of the $A_{\rm{FB}}$ measurements as functions of $b\bar{b}$ invariant mass. The integral values for each bin are shown.