Forward - backward charge asymmetry of quark pairs produced at the KEK TRISTAN e+ e- collider

The AMY collaboration Stuart, D. ; Breedon, R.E. ; Chinitz, L.M. ; et al.
Phys.Rev.D 49 (1994) 3098-3105, 1994.
Inspire Record 378569 DOI 10.17182/hepdata.22552

We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.

1 data table match query

Forward--backward asymmetry summed over all flavours of quarks.


FORWARD - BACKWARD CHARGE ASYMMETRY IN e+ e- ---> HADRON JETS

The AMY collaboration Stuart, D. ; Breedon, R.E. ; Kim, G.N. ; et al.
Phys.Rev.Lett. 64 (1990) 983, 1990.
Inspire Record 283082 DOI 10.17182/hepdata.19965

The forward-backward asymmetry of quarks produced in e+e− annihilations, summed over all flavors, is measured at √s between 50 and 60.8 GeV. Methods of determining the charge direction of jet pairs are discussed. The asymmetry is found to agree with the five-flavor standard model.

1 data table match query

Forward backward asymmetry summed over all flavours of quarks.


A MEASUREMENT OF e+ e- ---> b anti-b FORWARD - BACKWARD CHARGE ASYMMETRY BETWEEN s**(1/2) = 52-GeV AND 57-GeV

The AMY collaboration Sagawa, H. ; Lim, J. ; Abe, K. ; et al.
Phys.Rev.Lett. 63 (1989) 2341, 1989.
Inspire Record 279824 DOI 10.17182/hepdata.19996

Using 123 multihadronic inclusive muon-production e+e− annihilation events at an average c.m. energy of 55.2 GeV, we extracted the forward-backward charge asymmetry of the e+e−→bb¯ process and the R ratio for bb¯ production. We used an analysis method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The results, Ab=-0.72±0.28(stat)±0.13(syst) and Rb=0.57±0.16±0.10, are consistent with the standard model.

1 data table match query

Asymmetry in BOTTOM quark production.


Measurements of cross-section and asymmetry for e+ e- ---> b anti-b and heavy quark fragmentation at KEK TRISTAN

The AMY collaboration Liu, F. ; Chinitz, L.M. ; Abe, K. ; et al.
Phys.Rev.D 49 (1994) 4339-4347, 1994.
Inspire Record 381324 DOI 10.17182/hepdata.22547

Using 773 muons found in hadronic events from 142 pb−1 of data at a c.m. energy of 57.8 GeV, we extract the cross section and forward-backward charge asymmetry for the e+e−→bb¯ process, and the heavy quark fragmentation function parameters for the Peterson model. For the analysis of the e+e−→bb¯ process, we use a method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The cross section and asymmetry for e+e−→bb¯ are found to be Rb = 0.57 ± 0.06(stat) ± 0.08(syst) and Ab = −0.59 ± 0.09 ± 0.09, respectively. They are consistent with the standard model predictions. For the study of the fragmentation function we use the variable 〈xE〉, the fraction of the beam energy carried by the heavy hadrons. We obtain 〈xE〉c=0.56−0.05−0.03+0.04+0.03 and 〈xE〉b=0.65−0.04−0.06+0.06+0.05, respectively. These are in good agreement with previously measured values.

1 data table match query

No description provided.


Measurement of the forward - backward asymmetry in e+ e- ---> b anti-b and the b quark branching ratio to muons at TRISTAN using neural networks

The AMY collaboration Ueno, K. ; Kanda, S. ; Olsen, S.L. ; et al.
Phys.Lett.B 381 (1996) 365-371, 1996.
Inspire Record 418709 DOI 10.17182/hepdata.38513

The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).

1 data table match query

Measurements of cross-section and charge asymmetry for e+ e- ---> mu+ mu- and e+ e- ---> tau+ tau- at s**(1/2) = 57.8-GeV

The AMY collaboration Velissaris, C. ; Lusin, S. ; Chung, Y.S. ; et al.
Phys.Lett.B 331 (1994) 227-235, 1994.
Inspire Record 373861 DOI 10.17182/hepdata.38344

With data corresponding to 142 pb −1 accumulated at s = 57.8 GeV by the AMY detector at TRISTAN we measure the cross section of the reactions e + e − → μ + μ − and e + e − → τ + τ − and the symmetry in the angular distributions. For the lowest order cross section we obtain σ μμ = 27.54 ± 0.65 ± 0.95 pb and σ ττ = 28.27 ± 0.87 ± 0.69 pb, and for the forward-backward asymmetry, A μμ = 0.303 ± 0.027 ± 0.008 and A ττ = −0.291 ± 0.040 ± 0.019. These measurements agree with the standard model. Assuming e − μ − τ univrsality we extract the vector and axial coupling constants | gν | = 0.00 ± 0.09 and | g A | = 0.476 ± 0.024. A fit of data to composite models places lower bounds (95% confidence level) on the compositeness scale of 2–4 TeV.

2 data tables match query

Lowest order cross section and forward-backward asymmetry.

Lowest order cross section and forward-backward asymmetry.


MEASUREMENTS OF CROSS-SECTIONS AND CHARGE ASYMMETRIES FOR e+ e- ---> tau+ tau- AND e+ e- ---> mu+ mu- FOR S**(1/2) FROM 52-GeV TO 57-GeV

The AMY collaboration Bacala, A. ; Malchow, R.L. ; Sparks, K. ; et al.
Phys.Lett.B 218 (1989) 112-118, 1989.
Inspire Record 265797 DOI 10.17182/hepdata.51370

Measurements of the differential cross sections for e + e − →μ + μ − and e + e − →τ + τ − at values of s from 52 to 57 GeV are reported. The forward-backward asymmetries and the total cross sections for these reactions are found to be in agreement with predictions of the standard model of the electro-weak interactions. These measurements are used to extract values of the weak coupling constant g v e g v l and g A e g A l , where l = μ or τ .

3 data tables match query

No description provided.

Weighted average of results from data at 52, 55, 56, and 57 GeV.

Axis error includes +- 5/5 contribution ((C=APPROX)//).


Measurement of parity-violating spin asymmetries in W$^{\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 051103, 2016.
Inspire Record 1365091 DOI 10.17182/hepdata.73691

We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.

1 data table match query

Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.


Inclusive double-helicity asymmetries in neutral pion and eta meson production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 012007, 2014.
Inspire Record 1282448 DOI 10.17182/hepdata.64716

Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.

8 data tables match query

PI0 ASYM(LL) measurements from 2005.

PI0 ASYM(LL) measurements from 2006.

PI0 ASYM(LL) measurements from 2009.

More…

Measurement of the angular distribution of electrons from W ---> e neutrino decays observed in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 63 (2001) 072001, 2001.
Inspire Record 533572 DOI 10.17182/hepdata.41717

We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.

1 data table match query

Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.