Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

3 data tables match query

Forward-backward asymmetry corrected for kinematic cuts. Errors have systematics folded.

Forward-backward asymmetry. Statistical errors only.

Forward-backward asymmetry. Statistical errors only.


Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

10 data tables match query

Cross section and forward-backward asymmetry in the E+ E- channel for the 1993 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.46 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0026.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1994 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0021.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1995 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0020.

More…

DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

2 data tables match query

Asymmetries. Systematic error is 1 pct.

Asymmetries. Systematic error is 1 pct.


Direct measurement of leptonic coupling asymmetries with polarized Z's.

The SLD collaboration Abe, K. ; Akagi, T. ; Allen, N.J. ; et al.
Phys.Rev.Lett. 79 (1997) 804-808, 1997.
Inspire Record 442260 DOI 10.17182/hepdata.19552

We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.

1 data table match query

No description provided.


Final Results on $\mu$ and Tau Pair Production by the Jade Collaboration at {PETRA}

The JADE collaboration Hegner, S. ; Naroska, B. ; Schroth, F. ; et al.
Z.Phys.C 46 (1990) 547-554, 1990.
Inspire Record 284560 DOI 10.17182/hepdata.15279

The cross-sections and the forward-backward charge asymmetries of muon and tau pairs produced ine+e− collisions at\(\sqrt s= 35 GeV\) have been measured by the JADE Collaboration. The cross-sections,\(\sigma _\mu(\sqrt s= GeV) = 69.79 \pm 1.35 \pm 1.40 pb\) and\(\sigma _\mu(\sqrt s= GeV) = 71.72 \pm 1.48 \pm 1.61 pb\), are in agreement with the QED α3 prediction. The charge asymmetries areAμ=−(9.9±1.5±0.5)% andAτ=−(8.1±2.0±0.6)% in agreement with the value −9.2% predicted by the standard model, usingMZ=91.0 GeV and sin2θW=0.230.

1 data table match query

No description provided.


Improved measurements of electroweak parameters from Z decays into fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 53 (1992) 1-20, 1992.
Inspire Record 317141 DOI 10.17182/hepdata.14857

The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

5 data tables match query

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Measured cross sections and forward-backward asymmetries for inclusive E+ E- --> MU+ MU- events.

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> MU+ MU- events.

More…

Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of hadron and lepton pair production from e+ e- annihilation at center-of-mass energies of 130-GeV and 136-GeV

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 378 (1996) 373-384, 1996.
Inspire Record 421552 DOI 10.17182/hepdata.47801

Hadronic and leptonic cross-sections and forward-backward asymmetries are measured using 5.7 pb −1 of data taken with the ALEPH detector at LEP at centre-of-mass energies of 130 and 136 GeV. The results agree with Standard Model expectations. The measurement of hadronic cross-sections far away from the Z resonance improves the determination of the interference between photon and Z exchange. Constraints on models with extra Z bosons are presented.

5 data tables match query

Forward-Backward Asymmetry with loose SPRIME cuts.

Forward-Backward Asymmetry with tight SPRIME cuts.

Forward-Backward Asymmetry with loose SPRIME cuts.

More…

Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

12 data tables match query

E+ E- forward-backward asymmetries from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

E+ E- forward-backward asymmetries from the 1991 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data). Additional systematic error, excluding luminosity, is 0.002.

E+ E- forward-backward asymmetries from the 1990 data set after t-channel subtraction with only the E- constraint by polar angle 44 to 136 degrees and accollinearity < 10 degrees. Additional systematic error, excluding luminosity, is 0.003 at the peak.

More…