Accessing the strong interaction between $\Lambda$ baryons and charged kaons with the femtoscopy technique at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 845 (2023) 138145, 2023.
Inspire Record 2666805 DOI 10.17182/hepdata.143518

The interaction between $\Lambda$ baryons and kaons/antikaons is a crucial ingredient for the strangeness $S=0$ and $S=-2$ sector of the meson$-$baryon interaction at low energies. In particular, the $\Lambda{\mathrm{\overline{K}}}$ might help in understanding the origin of states such as the $\Xi\mathrm{(1620)}$, whose nature and properties are still under debate. Experimental data on $\Lambda$$-$${\mathrm{K}}$ and $\Lambda$$-$${\mathrm{\overline{K}}}$ systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of $\Lambda$$-$K$^+\oplus \overline{\Lambda}$$-$K$^-$ and $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ correlations obtained in the high-multiplicity triggered data sample in pp collisions at $\sqrt{s}=13$ TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednicky$-$Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ correlations show the presence of several structures at relative momenta $k^*$ above 200 MeV/$c$, compatible with the $\Omega$ baryon, the $\Xi\mathrm{(1690)}$, and $\Xi\mathrm{(1820)}$ resonances decaying into $\Lambda$$-$K$^-$ pairs. The low $k^*$ region in the $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ also exhibits the presence of the $\Xi\mathrm{(1620)}$ state, expected to strongly couple to the measured pair. The presented data allow to access the $\Lambda$K$^+$ and $\Lambda$K$^-$ strong interaction with an unprecedented precision and deliver the first experimental observation of the $\Xi\mathrm{(1620)}$ decaying into $\Lambda$K$^-$.

0 data tables match query

Measurement of the $\Lambda$ hyperon lifetime

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 108 (2023) 032009, 2023.
Inspire Record 2637684 DOI 10.17182/hepdata.141278

A new, more precise measurement of the $\Lambda$ hyperon lifetime is performed using a large data sample of Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with ALICE. The $\Lambda$ and $\overline{\Lambda}$ hyperons are reconstructed at midrapidity using their two-body weak decay channel $\Lambda \rightarrow \mathrm{p} + \pi^{-}$ and $\overline{\Lambda} \rightarrow \overline{\mathrm{p}} + \pi^{+}$. The measured value of the $\Lambda$ lifetime is $\tau_{\Lambda} = [261.07 \pm 0.37 \ ( \rm stat.) \pm 0.72 \ (\rm syst.) ]\ \rm ps$. The relative difference between the lifetime of $\Lambda$ and $\overline{\Lambda}$, which represents an important test of CPT invariance in the strangeness sector, is also measured. The obtained value $(\tau_{\Lambda}-\tau_{\overline{\Lambda}})/\tau_{\Lambda} = 0.0013 \pm 0.0028 \ (\mathrm{stat.}) \pm 0.0021 \ (\mathrm{syst.})$ is consistent with zero within the uncertainties. Both measurements of the $\Lambda$ hyperon lifetime and of the relative difference between $\tau_{\Lambda}$ and $\tau_{\overline{\Lambda}}$ are in agreement with the corresponding world averages of the Particle Data Group and about a factor of three more precise.

0 data tables match query

${\rm f}_{0}(980)$ production in inelastic pp collisions at $\sqrt{s} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137644, 2023.
Inspire Record 2094796 DOI 10.17182/hepdata.136307

The measurement of the production of ${\rm f}_{0}(980)$ in inelastic pp collisions at $\sqrt{s} = 5.02$ TeV is presented. This is the first reported measurement of inclusive ${\rm f}_{0}(980)$ yield at LHC energies. The production is measured at midrapidity, $|y| < 0.5$, in a wide transverse momentum range, $0 < p_{\rm T} < 16$ GeV/$c$, by reconstructing the resonance in the ${\rm f}_{0}(980) \rightarrow \pi^{+}\pi^{-}$ hadronic decay channel using the ALICE detector. The $p_{\rm T}$-differential yields are compared to those of pions, protons and $\phi$ mesons as well as to predictions from the HERWIG 7.2 QCD-inspired Monte Carlo event generator and calculations from a coalescence model that uses the AMPT model as an input. The ratio of the $p_{\rm T}$-integrated yield of ${\rm f}_{0}(980)$ relative to pions is compared to measurements in ${\rm e}^{+}{\rm e}^{-}$ and pp collisions at lower energies and predictions from statistical hadronisation models and HERWIG 7.2. A mild collision energy dependence of the ${\rm f}_{0}(980)$ to pion production is observed in pp collisions from SPS to LHC energies. All considered models underpredict the $p_{\rm T}$-integrated $2{\rm f}_{0}(980)/(\pi^{+}+\pi^{-})$ ratio. The prediction from the canonical statistical hadronisation model assuming a zero total strangeness content of ${\rm f}_{0}(980)$ is consistent with the data within 1.9$\sigma$ and is the closest to the data. The results provide an essential reference for future measurements of the particle yield and nuclear modification in p$-$Pb and Pb$-$Pb collisions, which have been proposed to be instrumental to probe the elusive nature and quark composition of the ${\rm f}_{0}(980)$ scalar meson.

0 data tables match query

Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024912, 2023.
Inspire Record 2635688 DOI 10.17182/hepdata.130768

Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second ($v_{2}$) and third ($v_{3}$) order azimuthal anisotropies of $K_{S}^{0}$, $\phi$, $\Lambda$, $\Xi$ and $\Omega$ at mid-rapidity ($|y|<$1) in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV measured by the STAR detector. The $v_{2}$ and $v_{3}$ are measured as a function of transverse momentum and centrality. Their energy dependence is also studied. $v_{3}$ is found to be more sensitive to the change in the center-of-mass energy than $v_{2}$. Scaling by constituent quark number is found to hold for $v_{2}$ within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in $v_{2}$ and $v_{3}$ between baryons and anti-baryons are presented, and ratios of $v_{3}$/$v_{2}^{3/2}$ are studied and motivated by hydrodynamical calculations. The ratio of $v_{2}$ of $\phi$ mesons to that of anti-protons ($v_{2}(\phi)/v_{2}(\bar{p})$) shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton $v_{2}$.

0 data tables match query

Study of $\phi$-meson production in $p+$Al, $p+$Au, $d+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 106 (2022) 014908, 2022.
Inspire Record 2050486 DOI 10.17182/hepdata.130267

Small nuclear collisions are mainly sensitive to cold-nuclear-matter effects; however, the collective behavior observed in these collisions shows a hint of hot-nuclear-matter effects. The identified-particle spectra, especially the $\phi$ mesons which contain strange and antistrange quarks and have a relatively small hadronic-interaction cross section, are a good tool to study these effects. The PHENIX experiment has measured $\phi$ mesons in a specific set of small collision systems $p$$+$Al, $p$$+$Au, and $^3$He$+$Au, as well as $d$$+$Au [Phys. Rev. C {\bf 83}, 024909 (2011)], at $\sqrt{s_{_{NN}}}=200$ GeV. The transverse-momentum spectra and nuclear-modification factors are presented and compared to theoretical-model predictions. The comparisons with different calculations suggest that quark-gluon plasma may be formed in these small collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. However, the volume and the lifetime of the produced medium may be insufficient for observing strangeness-enhancement and jet-quenching effects. Comparison with calculations suggests that the main production mechanisms of $\phi$ mesons at midrapidity may be different in $p$$+$Al versus $p/d/$$^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. While thermal quark recombination seems to dominate in $p/d/$$^3$He$+$Au collisions, fragmentation seems to be the main production mechanism in $p$$+$Al collisions.

0 data tables match query

Measurements of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 202301, 2022.
Inspire Record 1946124 DOI 10.17182/hepdata.114372

We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

0 data tables match query

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

12 data tables match query

$K^-$ (a), invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\phi$ meson (b) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

$\Xi^-$ (c) invariant yields as a function of $m_T-m_0$ for various rapidity regions in 0--10\% central Au+Au collisions at ${\sqrt{s_{\mathrm{NN}}} = \mathrm{3\,GeV}}$. Statistics and systematic uncertainties are added quadratic here for plotting. Solid and dashed black lines depict $m_T$ exponential function fits to the measured data points with arbitrate scaling factors in each rapidity windows.

More…

Version 2
K$^{0}_{\rm S}$- and (anti-)$\Lambda$-hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 945, 2021.
Inspire Record 1891391 DOI 10.17182/hepdata.114015

Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at $\sqrt{s} = 13$ TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K$^{0}_{\rm S}$) or baryon ($\Lambda$) with transverse momentum $p_{\rm T} > 3$ GeV/c is produced. Azimuthal correlations between kaons or $\Lambda$ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ($3 < p_{\rm T}^{\rm trigg} < 20$ GeV/$c$) and associated particle $p_{\rm T}$ (1 GeV/$c$$< p_{\rm T}^{\rm assoc} < p_{\rm T}^{\rm trigg}$), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K$^{0}_{\rm S}$ or $\Lambda$($\overline{\Lambda}$) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.

0 data tables match query

Investigating the role of strangeness in baryon$-$antibaryon annihilation at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 829 (2022) 137060, 2022.
Inspire Record 1862795 DOI 10.17182/hepdata.128683

Annihilation dynamics plays a fundamental role in the baryon$-$antibaryon interaction (B$-\rm{\overline{B}}$) at low-energy and its strength and range are crucial in the assessment of possible baryonic bound states. Experimental data on annihilation cross sections are available for the p$-\rm{\overline{p}}$ system but not in the low relative momentum region. Data regarding the B$-\rm{\overline{B}}$ interaction with strange degrees of freedom are extremely scarce, hence the modeling of the annihilation contributions is mainly based on nucleon$-$antinucleon (N$-\rm{\overline{N}}$) results, when available. In this letter we present a measurement of the p$-\rm{\overline{p}}$, p$-\overline{\Lambda}\oplus\rm{\overline{p}}-\Lambda$ and $\Lambda-\overline{\Lambda}$ interaction using correlation functions in the relative momentum space in high-multiplicity triggered pp collisions at $\sqrt{s} = 13$ TeV recorded by ALICE at the LHC. In the p$-\rm{\overline{p}}$ system the couplings to the mesonic channels in different partial waves are extracted by adopting a coupled-channel approach with recent $\chi\rm{EFT}$ potentials. The inclusion of these inelastic channels provides good agreement with the data, showing a significant presence of the annihilation term down to zero momentum. Predictions obtained using the Lednický$-$Lyuboshits formula and scattering parameters obtained from heavy-ion collisions, hence mainly sensitive to elastic processes, are compared with the experimental p$-\overline{\Lambda}\oplus\rm{\overline{p}}-\Lambda$ and $\Lambda-\overline{\Lambda}$ correlations. The model describes the $\Lambda-\overline{\Lambda}$ data and underestimates the p$-\overline{\Lambda}\oplus\rm{\overline{p}}-\Lambda$ data in the region of momenta below 200 MeV/$c$. The observed deviation indicates a different contribution of annihilation channels to the two systems containing strange hadrons.

0 data tables match query

Azimuthal anisotropy measurements of strange and multi-strange hadrons in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 103 (2021) 064907, 2021.
Inspire Record 1852040 DOI 10.17182/hepdata.102643

We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.

0 data tables match query