Measurement of the $t\bar{t}$ cross section and its ratio to the $Z$ production cross section using $pp$ collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138376, 2024.
Inspire Record 2689657 DOI 10.17182/hepdata.143515

The inclusive top-quark-pair production cross section $\sigma_{t\bar{t}}$ and its ratio to the $Z$-boson production cross section have been measured in proton--proton collisions at $\sqrt{s} = 13.6$ TeV, using 29 fb${}^{-1}$ of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and $b$-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be $\sigma_{t\bar{t}} = 850 \pm 3\mathrm{(stat.)}\pm 18\mathrm{(syst.)}\pm 20\mathrm{(lumi.)}$ pb. The ratio of the $t\bar{t}$ and the $Z$-boson production cross sections is also measured, where the $Z$-boson contribution is determined for inclusive $e^+e^-$ and $\mu^+\mu^-$ events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the $t\bar{t}$ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, $R_{t\bar{t}/Z} = 1.145 \pm 0.003\mathrm{(stat.)}\pm 0.021\mathrm{(syst.)}\pm 0.002\mathrm{(lumi.)}$ is consistent with the Standard Model prediction using the PDF4LHC21 PDF set.

0 data tables match query

Version 3
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 091, 2022.
Inspire Record 2013377 DOI 10.17182/hepdata.113657

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.

0 data tables match query