One pion production in pp collisions at 16.2 gev/c

Gnat, Y. ; Alexander, G. ; Benary, O. ; et al.
Nucl.Phys.B 54 (1973) 333-354, 1973.
Inspire Record 84174 DOI 10.17182/hepdata.32585

A study of pp interactions at an incident momentum of 16.2 GeV/ c leading to two-prong non-strange final states was carried out in an exposure of the 2m CERN hydrogen bubble chamber. The c.m. angle and momentum distributions for the outgoing particles in the final states pn π + and pp π 0 are presented and discussed. These final states were analysed in terms of quasi two-body final states - N(Nπ), with the pion-nucleon system in an I = 1 2 or I = 3 2 state. A determination of these two isospin amplitudes and their interference term is then carried out. The reaction pp → pn π + is found to be well described by a Reggeized exchange model, as well as by a double Regge-exchange model.

0 data tables match query

High $p_T$ Hadron Production in Photon - Photon Collisions

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 107 (1981) 290-296, 1981.
Inspire Record 167417 DOI 10.17182/hepdata.31027

We have studied the properties of hadron production in photon-photon scattering with tagged photons at the e + e − storage ring PETRA. A tail in the p T distribution of particles consistent with p T −4 has been observed. We show that this tail cannot be due to the hadronic part of the photon. Selected events with high p T particles are found to be consistent with a two-jet structure as expected from a point-like coupling of the photons to quarks. The lowest-order cross section predicted for γγ → q q , σ = 3 Σ e q 4 · σ γγ → μμ , is approached from above by the data at large transverse momenta.

0 data tables match query

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

0 data tables match query

Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

0 data tables match query

Inclusive J/psi production in pp collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 718 (2012) 295-306, 2012.
Inspire Record 1094079 DOI 10.17182/hepdata.62231

The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.

0 data tables match query

Jet fragmentation properties of anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 65 (1990) 968-971, 1990.
Inspire Record 297585 DOI 10.17182/hepdata.19919

The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).

0 data tables match query

Study of t anti-t production p anti-p collisions using total transverse energy

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 75 (1995) 3997, 1995.
Inspire Record 396003 DOI 10.17182/hepdata.42358

We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.

0 data tables match query

Two-pion Bose-Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 696 (2011) 328-337, 2011.
Inspire Record 881884 DOI 10.17182/hepdata.56743

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.

0 data tables match query

Small angle J / psi production in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 35-40, 1999.
Inspire Record 473954 DOI 10.17182/hepdata.42141

This paper presents the first measurement of the inclusive J/Psi production cross section in the forward pseudorapidity region 2.5<|eta|<3.7 in ppbar collisions at sqrt(s)=1.8TeV. The results are based on 9.8 pb-1 of data collected using the D0 detector at the Fermilab Tevatron Collider. The inclusive J/Psi cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.

0 data tables match query

The Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2451-2456, 1999.
Inspire Record 473457 DOI 10.17182/hepdata.42154

We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.

0 data tables match query