W$^\pm$-boson production in p$-$Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 036, 2023.
Inspire Record 2071184 DOI 10.17182/hepdata.133034

The production of the W$^\pm$ bosons measured in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{NN}} = 8.16$ TeV and Pb$-$Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE at the LHC is presented. The W$^\pm$ bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region $-4 < \eta^\mu_{\rm lab} < -2.5$ with transverse momentum $p_{\rm T}^\mu > 10$ GeV/$c$. While in Pb$-$Pb collisions the measurements are performed in the forward ($2.5 < y^\mu_{\rm cms} < 4$) rapidity region, in p$-$Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward ($-4.46 < y^\mu_{\rm cms} < -2.96$) and forward ($2.03 < y^\mu_{\rm cms} < 3.53$) rapidity regions. The W$^{-}$ and W$^{+}$ production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p$-$Pb collision centrality, the production cross sections of the W$^{-}$ and W$^{+}$ bosons are combined and normalised to the average number of binary nucleon$-$nucleon collision $\langle N_\mathrm{coll} \rangle$. In Pb$-$Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W$^\pm$-boson cross sections in p$-$Pb and Pb$-$Pb collisions is also reported. The results are compared with perturbative QCD (pQCD) calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDF (nPDFs) and in particular of the light-quark distributions.

0 data tables match query

Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 076, 2020.
Inspire Record 1797444 DOI 10.17182/hepdata.97372

Measurement of Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity $-4 < \eta_{\mu} < -2.5$ and transverse momentum $p_{\rm T}^{\mu} > 20$ GeV/$c$ in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass $60 < m^{\mu\mu} < 120$ GeV$c^2$ and rapidity $2.5 < y_{cms}^{\mu\mu} < 4$. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward ($-4.46< y_{cms}^{\mu\mu}<-2.96$) and forward ($2.03< y_{cms}^{\mu\mu}<3.53$) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a $3.4\sigma$ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.

0 data tables match query

Energy dependence of $\phi$ meson production at forward rapidity in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 772, 2021.
Inspire Record 1861688 DOI 10.17182/hepdata.110876

The production of $\phi$ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $2.5 < y < 4$. Measurements of the differential cross section ${\rm d}^2\sigma/{\rm d}y {\rm d}p_{\rm T}$ are presented as a function of the transverse momentum ($p_{\rm T}$) at the center-of-mass energies $\sqrt{s}=5.02$, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $\sqrt{s}=5.02$ and 13 TeV are also studied in several rapidity intervals as a function of $p_{\rm T}$, and as a function of rapidity in three $p_{\rm T}$ intervals. A hardening of the $p_{\rm T}$-differential cross section with the collision energy is observed, while, for a given energy, $p_{\rm T}$ spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing $p_{\rm T}$. The new results, complementing the published measurements at $\sqrt{s}=2.76$ and 7 TeV, allow one to establish the energy dependence of $\phi$ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with $p_{\rm T}$ and rapidity at all the energies.

0 data tables match query

J/$\psi$ production at midrapidity in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 137, 2023.
Inspire Record 2593303 DOI 10.17182/hepdata.138403

The production of inclusive, prompt and non-prompt J/$\psi$ was studied for the first time at midrapidity ($ -1.37 < y_{\rm cms} < 0.43$) in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV with the ALICE detector at the LHC. The inclusive J/$\psi$ mesons were reconstructed in the dielectron decay channel in the transverse momentum ($p_{\rm T}$) interval $0 < p_{\rm T} < 14$ GeV/$c$ and the prompt and non-prompt contributions were separated on a statistical basis for $p_{\rm T} > 2$ GeV/$c$. The study of the J/$\psi$ mesons in the dielectron channel used for the first time in ALICE online single-electron triggers from the Transition Radiation Detector, providing a data sample corresponding to an integrated luminosity of $689 \pm 13 \mu{\rm b}^{-1}$. The proton$-$proton reference cross section for inclusive J/$\psi$ was obtained based on interpolations of measured data at different centre-of-mass energies and a universal function describing the $p_{\rm T}$-differential J/$\psi$ production cross sections. The $p_{\rm T}$-differential nuclear modification factors $R_{\rm pPb}$ of inclusive, prompt, and non-prompt J/$\psi$ are consistent with unity and described by theoretical models implementing only nuclear shadowing.

0 data tables match query

Inclusive $\Upsilon$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 806 (2020) 135486, 2020.
Inspire Record 1762360 DOI 10.17182/hepdata.95539

$\Upsilon$ production in p-Pb interactions is studied at the centre-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals $2.03 < y_{\rm{cms}} < 3.53$ and $-4.46 < y_{\rm{cms}} < -2.96$, down to zero transverse momentum. In this work, results on the inclusive $\Upsilon(1\rm{S})$ production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the $\Upsilon(1\rm{S})$ yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the $\Upsilon(2\rm{S})$ nuclear modification factor is also evaluated, suggesting a suppression similar to that of the $\Upsilon(1\rm{S})$. A first measurement of the $\Upsilon(3\rm{S})$ has also been performed. Finally, results are compared with previous measurements performed by ALICE in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV and with theoretical calculations.

0 data tables match query

Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p$-$Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 08 (2023) 006, 2023.
Inspire Record 2648614 DOI 10.17182/hepdata.142624

Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s} = 13$ TeV at midrapidity with the ALICE detector are presented down to a transverse momentum ($p_{\rm T}$) of 0.2 GeV$/c$ and up to $p_{\rm T} = 35$ GeV$/c$, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p$-$Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the $p_{\rm T}$ range $0.5 < p_{\rm T} < 26$ GeV$/c$ at $\sqrt{s_{\rm NN}} = 8.16$ TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p$-$Pb collisions grow faster than linear with the self-normalised multiplicity. A strong $p_{\rm T}$ dependence is observed in pp collisions, where the yield of high-$p_{\rm T}$ electrons increases faster as a function of multiplicity than the one of low-$p_{\rm T}$ electrons. The measurement in p$-$Pb collisions shows no $p_{\rm T}$ dependence within uncertainties. The self-normalised yields in pp and p$-$Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.

0 data tables match query

Measurement of $\psi$(2S) production as a function of charged-particle pseudorapidity density in pp collisions at $\sqrt{s}$ = 13 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV with ALICE at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 147, 2023.
Inspire Record 2070433 DOI 10.17182/hepdata.135830

Production of inclusive charmonia in pp collisions at center-of-mass energy of $\sqrt{s}$ = 13 TeV and p-Pb collisions at center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/$\psi$, $\psi$(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame $2.5 < y_{\rm cms} < 4.0$ for pp collisions, and $2.03 < y_{\rm cms} < 3.53$ and $-4.46 < y_{\rm cms} < -2.96$ for p-Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity ($|\eta|<1.0$). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The $\psi$(2S) yield increases with the charged-particle pseudorapidity density. The ratio of $\psi$(2S) over J/$\psi$ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/$\psi$ and $\psi$(2S) yields with respect to charged-particle pseudorapidity density. Results for the $\psi$(2S) yield and its ratio with respect to J/$\psi$ agree with available model calculations.

0 data tables match query

Multiplicity dependence of charged-particle production in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 845 (2023) 138110, 2023.
Inspire Record 2601281 DOI 10.17182/hepdata.142463

Multiplicity ($N_{\rm ch}$) distributions and transverse momentum ($p_{\rm T}$) spectra of inclusive primary charged particles in the kinematic range of $|\eta| < 0.8$ and 0.15 GeV/$c$$< p_{T} <$ 10 GeV/$c$ are reported for pp, p-Pb, Xe-Xe and Pb-Pb collisions at centre-of-mass energies per nucleon pair ranging from $\sqrt{s_{\rm NN}} = 2.76$ TeV up to $13$ TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the $p_{\rm T}$ spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.

0 data tables match query

Measurement of very forward energy and particle production at midrapidity in pp and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 08 (2022) 086, 2022.
Inspire Record 1890061 DOI 10.17182/hepdata.131521

The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p$-$Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions. Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at $\sqrt{s}=13$ TeV and in p$-$Pb collisions at $\sqrt{s_{\rm{NN}}}=8.16$ TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used.

0 data tables match query

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

0 data tables match query