A Study of the Production of Two Direct Photons in $p p$ Collisions at the {CERN} {ISR}

The Axial Field Spectrometer collaboration Åkesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Z.Phys.C 32 (1986) 491-497, 1986.
Inspire Record 228954 DOI 10.17182/hepdata.15834

We have studied the processpp→γγ+X at\(\sqrt s= 63 GeV\) GeV in the central rapidity region. We report a positive signal at 96% C.L., a ratio γγ/e+e−=4.0±3.0 when the transverse momentum of each photon is above 2 GeV/c, and a cross-sectiondσ/dydMγγ=(5.5±2.7)×10−34 cm2/GeV when |y|<0.5,4<Mγγ<6 GeV.

0 data tables match query

Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Eur.Phys.J.C 71 (2011) 1512, 2011.
Inspire Record 871366 DOI 10.17182/hepdata.56004

Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.

0 data tables match query

Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 059, 2014.
Inspire Record 1268975 DOI 10.17182/hepdata.62289

Double-differential dijet cross sections measured in pp collisions at the LHC with a 7 TeV centre-of-mass energy are presented as functions of dijet mass and rapidity separation of the two highest-pT jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5/fb, recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross sections are presented at the particle level. Cross sections are measured up to 5 TeV dijet mass using jets reconstructed with the anti-kt algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross sections are compared with next-to-leading-order perturbative QCD calculations by NLOJET++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a parton-shower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.

0 data tables match query

Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 228, 2015.
Inspire Record 1326641 DOI 10.17182/hepdata.71311

Double-differential three-jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV using the ATLAS detector at the Large Hadron Collider. The measurements are presented as a function of the three-jet mass $(m_{jjj})$, in bins of the sum of the absolute rapidity separations between the three leading jets $(|Y^\ast|)$. Invariant masses extending up to 5 TeV are reached for $8< |Y^\ast| < 10$. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51 fb$^{-1}$. Jets are identified using the anti-$k_t$ algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.

0 data tables match query