CHARGED AND NEUTRAL PARTICLE PRODUCTION FROM 400-GEV/C P P COLLISIONS

Kass, R.D. ; Ko, W. ; Lander, R.L. ; et al.
Phys.Rev.D 20 (1979) 605-614, 1979.
Inspire Record 146628 DOI 10.17182/hepdata.24207

Charged- and neutral-particle production from 400-GeV/c pp collisions are measured simultaneously using the Fermilab 15-ft bubble chamber. The π0 and K0 cross sections are rising at Fermilab energies, while the Λ0 cross section remains fairly constant. Similarly, the average number of π0's and K0's increases as a function of the number of negative particles in an event, yet no such dependence is noted for the Λ0's. The ratio of average number of π0 to average number of π− per inelastic collisions is found to be constant at Serpukhov and Fermilab energies (40 to 400 GeV/c) and equal to 1.22±0.02. Cross sections for Σ0 and Σ¯0 production are measured and limits are found for η0 and ω0 production. Neutral- and charged-pion correlations are compared with five pion-production models.

0 data tables match query

QCD studies using a cone based jet finding algorithm for e+ e- collisions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 197-212, 1994.
Inspire Record 373000 DOI 10.17182/hepdata.48238

We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.

0 data tables match query