Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 118 (2017) 162302, 2017.
Inspire Record 1512772 DOI 10.17182/hepdata.78231

We present the first measurement of the two-particle transverse momentum differential correlation function, $P_2\equiv\langle \Delta p_{\rm T} \Delta p_{\rm T} \rangle /\langle p_{\rm T} \rangle^2$, in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =$ 2.76 TeV. Results for $P_2$ are reported as a function of relative pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \varphi$) between two particles for different collision centralities. The $\Delta \phi$ dependence is found to be largely independent of $\Delta \eta$ for $|\Delta \eta| \geq$ 0.9. In 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around $\Delta \varphi = \pi$ (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of $P_2$, studied as a function of collision centrality, show that correlations at $|\Delta \eta| \geq$ 0.9 can be well reproduced by a flow ansatz based on the notion that measured momentum correlations are strictly determined by the collective motion of the system.

0 data tables match query

Azimuthal anisotropy of charged jet production in $\sqrt{s_{\rm NN}}$ = 2.76 TeV Pb-Pb collisions

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 511-525, 2016.
Inspire Record 1394678 DOI 10.17182/hepdata.70825

We present measurements of the azimuthal dependence of charged jet production in central and semi-central $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as $v_{2}^{\mathrm{ch~jet}}$. Jet finding is performed employing the anti-$k_{\mathrm{T}}$ algorithm with a resolution parameter $R$ = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero $v_{2}^{\mathrm{ch~jet}}$ is observed in semi-central collisions (30-50\% centrality) for 20 $<$ $p_{\mathrm{T}}^{\rm ch~jet}$ $<$ 90 ${\mathrm{GeV}\kern-0.05em/\kern-0.02em c}$. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the $v_2$ of single charged particles at high $p_{\mathrm{T}}$. Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions.

0 data tables match query

Forward-central two-particle correlations in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 126-139, 2016.
Inspire Record 1379977 DOI 10.17182/hepdata.70826

Two-particle angular correlations between trigger particles in the forward pseudorapidity range ($2.5 < |\eta| < 4.0$) and associated particles in the central range ($|\eta| < 1.0$) are measured with the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The trigger particles are reconstructed using the muon spectrometer, and the associated particles by the central barrel tracking detectors. In high-multiplicity events, the double-ridge structure, previously discovered in two-particle angular correlations at midrapidity, is found to persist to the pseudorapidity ranges studied in this Letter. The second-order Fourier coefficients for muons in high-multiplicity events are extracted after jet-like correlations from low-multiplicity events have been subtracted. The coefficients are found to have a similar transverse momentum ($p_{\rm T}$) dependence in p-going (p-Pb) and Pb-going (Pb-p) configurations, with the Pb-going coefficients larger by about $16\pm6$%, rather independent of $p_{\rm T}$ within the uncertainties of the measurement. The data are compared with calculations using the AMPT model, which predicts a different $p_{\rm T}$ and $\eta$ dependence than observed in the data. The results are sensitive to the parent particle $v_2$ and composition of reconstructed muon tracks, where the contribution from heavy flavour decays are expected to dominate at $p_{\rm T}>2$ GeV/$c$.

0 data tables match query

Version 2
Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 132302, 2016.
Inspire Record 1419244 DOI 10.17182/hepdata.72886

We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\eta|<0.8$ and for the transverse momentum range $0.2<p_{\rm T}<5$ GeV/$c$. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multi-particle cumulant method. Compared to results from Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV, the anisotropic flow coefficients $v_{2}$, $v_{3}$ and $v_{4}$ are found to increase by ($3.0\pm0.6$)%, ($4.3\pm1.4$)% and ($10.2\pm3.8$)%, respectively, in the centrality range 0-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies.

0 data tables match query

J/$\psi$ elliptic flow in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Rev.Lett. 119 (2017) 242301, 2017.
Inspire Record 1623907 DOI 10.17182/hepdata.80235

We report a precise measurement of the J/$\psi$ elliptic flow in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The J/$\psi$ mesons are reconstructed at mid-rapidity ($|y| < 0.9$) in the dielectron decay channel and at forward rapidity ($2.5<y<4.0$) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow $v_2$ of the J/$\psi$ is studied as a function of transverse momentum and centrality. A positive $v_2$ is observed in the transverse momentum range $2 < p_{\rm T} < 8$ GeV/$c$ in the three centrality classes studied and confirms with higher statistics our earlier results at $\sqrt{s_{\rm NN}} = 2.76$ TeV in semi-central collisions. At mid-rapidity, the J/$\psi$ $v_2$ is investigated as a function of transverse momentum in semi-central collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low $p_{\rm T}$ the elliptic flow of the J/$\psi$ originates from the thermalization of charm quarks in the deconfined medium, but suggests that additional mechanisms might be missing in the models.

0 data tables match query

J/$\psi$ elliptic and triangular flow in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2020) 141, 2020.
Inspire Record 1798507 DOI 10.17182/hepdata.99234

The inclusive J/$\psi$ elliptic ($v_2$) and triangular ($v_3$) flow coefficients measured at forward rapidity (2.5 $<y<$ 4) and the $v_2$ measured at midrapidity ($|y|<$ 0.9) in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the LHC are reported. The entire Pb-Pb data sample collected during Run 2 is employed, amounting to an integrated luminosity of 750 $\mu$b$^{-1}$ at forward rapidity and 93 $\mu$b$^{-1}$ at midrapidity. The results are obtained using the scalar product method and are reported as a function of transverse momentum $p_{\rm T}$ and collision centrality. At midrapidity, the J/$\psi$ $v_2$ is in agreement with the forward rapidity measurement. The centrality averaged results indicate a positive J/$\psi$ $v_3$ with a significance of more than 5$\sigma$ at forward rapidity in the $p_{\rm T}$ range $2<p_{\rm T}<5$ GeV/$c$. The forward rapidity $v_2$, $v_3$, and $v_3$/$v_2$ results at low and intermediate $p_{\rm T}$ ($p_{\rm T} \lesssim 8$ GeV/$c$) exhibit a mass hierarchy when compared to pions and D mesons, while converging into a species-independent curve at higher $p_{\rm T}$. At low and intermediate $p_{\rm T}$, the results could be interpreted in terms of a later thermalization of charm quarks compared to light quarks, while at high $p_{\rm T}$, path-length dependent effects seem to dominate. The J/$\psi$ $v_2$ measurements are further compared to a microscopic transport model calculation. Using a simplified extension of the quark scaling approach involving both light and charm quark flow components, it is shown that the D-meson $v_{\rm n}$ measurements can be described based on those for charged pions and J/$\psi$ flow.

0 data tables match query

Bulk Properties of the System Formed in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 101 (2020) 024905, 2020.
Inspire Record 1748776 DOI 10.17182/hepdata.103857

We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.

0 data tables match query

D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Rev.Lett. 120 (2018) 102301, 2018.
Inspire Record 1608612 DOI 10.17182/hepdata.78255

The azimuthal anisotropy coefficient $v_2$ of prompt D$^0$, D$^+$, D$^{*+}$ and D$_s^+$ mesons was measured in mid-central (30-50% centrality class) Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at mid-rapidity, $|y|<0.8$, in the transverse momentum interval $1<p_{\rm T}<24$ GeV/$c$. The measured D-meson $v_2$ has similar values as that of charged pions. The D$_s^+$ $v_2$, measured for the first time, is found to be compatible with that of non-strange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.

0 data tables match query

Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 762 (2016) 376-388, 2016.
Inspire Record 1456145 DOI 10.17182/hepdata.73940

We present measurements of the elliptic ($\mathrm{v}_2$), triangular ($\mathrm{v}_3$) and quadrangular ($\mathrm{v}_4$) anisotropic azimuthal flow over a wide range of pseudorapidities ($-3.5< \eta < 5$). The measurements are performed with Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of $\mathrm{v}_n(\eta)$ is largely independent of centrality for the flow harmonics $n=2-4$, however the higher harmonics fall off more steeply with increasing $|\eta|$. We assess the validity of extended longitudinal scaling of $\mathrm{v}_2$ by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data.

0 data tables match query

Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 813 (2021) 136054, 2021.
Inspire Record 1797463 DOI 10.17182/hepdata.105256

The elliptic and triangular flow coefficients $v_2$ and $v_3$ of prompt D$^{0}$, D$^{+}$, and D$^{*+}$ mesons were measured at midrapidity ($|y|<0.8$) in Pb-Pb collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays in the transverse momentum interval $1< p_{\rm T}<36$ GeV/$c$ in central (0-10%) and semi-central (30-50%) collisions. Compared to pions, protons, and J/$\psi$ mesons, the average D-meson $v_{n}$ harmonics are compatible within uncertainties with a mass hierarchy for $p_{\rm T} \lesssim 3$ GeV/$c$, and are similar to those of charged pions for higher $p_{\rm T}$. The coupling of the charm quark to the light quarks in the underlying medium is further investigated with the application of the event-shape engineering (ESE) technique to the D-meson $v_2$ and $p_{\rm T}$-differential yields. The D-meson $v_2$ is correlated with average bulk elliptic flow in both central and semi-central collisions. Within the current precision, the ratios of per-event D-meson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the measurements are found to be reasonably well described by theoretical calculations including the effects of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically expanding medium.

0 data tables match query