Search for metastable heavy charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 407, 2015.
Inspire Record 1376482 DOI 10.17182/hepdata.68640

Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.

0 data tables match query

Measurements of fiducial cross-sections for $t\bar{t}$ production with one or two additional $b$-jets in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 11, 2016.
Inspire Record 1390114 DOI 10.17182/hepdata.72856

Fiducial cross-sections for $t\bar{t}$ production with one or two additional $b$-jets are reported, using an integrated luminosity of 20.3 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for $t\bar{t}$ events with at least one additional $b$-jet is measured to be 950 $\pm$ 70 (stat.) $^{+240}_{-190}$ (syst.) fb in the lepton-plus-jets channel and 50 $\pm$ 10 (stat.) $^{+15}_{-10}$ (syst.) fb in the $e \mu$ channel. The cross-section times branching ratio for events with at least two additional $b$-jets is measured to be 19.3 $\pm$ 3.5 (stat.) $\pm$ 5.7 (syst.) fb in the dilepton channel ($e \mu$,\,$\mu\mu$, and \,$ee$) using a method based on tight selection criteria, and 13.5 $\pm$ 3.3 (stat.) $\pm$ 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 $\pm$ 0.33 (stat.) $\pm$ 0.28 (syst.)\% for the ratio of $t\bar{t}$ production with two additional $b$-jets to $t\bar{t}$ production with any two additional jets. All measurements are in good agreement with recent theory predictions.

0 data tables match query

Measurement of the differential cross-sections of prompt and non-prompt production of $J/\psi$ and $\psi(2\mathrm{S})$ in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 283, 2016.
Inspire Record 1409298 DOI 10.17182/hepdata.72721

The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.

0 data tables match query

Measurement of the production cross section of prompt J/psi mesons in association with a W boson in pp collisions at sqrt{s}=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 04 (2014) 172, 2014.
Inspire Record 1276825 DOI 10.17182/hepdata.62522

The process pp--> W + J/psi provides a powerful probe of the production mechanism of charmonium in hadronic collisions, and is also sensitive to multiple parton interactions in the colliding protons. Using the 2011 ATLAS dataset of 4.5 fb-1 of sqrt{s} = 7 TeV pp collisions at the LHC, the first observation is made of the production of W + prompt J/psi events in hadronic collisions, using W-->mu+nu and J/psi-->mu+mu. A yield of 27.4+7.5-6.5 W + prompt J/psi events is observed, with a statistical significance of 5.1 sigma. The production rate as a ratio to the inclusive W boson production rate is measured, and the double parton scattering contribution to the cross section is estimated.

0 data tables match query

Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

0 data tables match query

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

0 data tables match query

Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Nature Phys. 13 (2017) 535-539, 2017.
Inspire Record 1471838 DOI 10.17182/hepdata.77284

At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the Quark-Gluon Plasma (QGP) [1]. Such an extreme state of strongly-interacting QCD (Quantum Chromo-Dynamics) matter is produced in the laboratory with high-energy collisions of heavy nuclei, where an enhanced production of strange hadrons is observed [2-6]. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions [7], is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions [8,9]. Yet, enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity pp collisions. We find that the integrated yields of strange and multi-strange particles relative to pions increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with p-Pb collision results [10,11] indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.

0 data tables match query

Measurement of prompt D-meson production in p-Pb collisions at sqrt(sNN) = 5.02 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 113 (2014) 232301, 2015.
Inspire Record 1296081 DOI 10.17182/hepdata.63866

The $p_{\rm T}$-differential production cross sections of the prompt charmed mesons $D^0$, $D^+$, $D^{*+}$ and $D_{\rm s}^{+}$ and their charge conjugate in the rapidity interval $-0.96 < y_{\rm cms} < 0.04$ were measured in p-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The nuclear modification factor $R_{\rm pPb}$, quantifying the D-meson yield in p-Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15-20% uncertainties with unity in the transverse momentum interval $1 < p_{\rm T} < 24$ GeV/$c$. No significant difference among the $R_{\rm pPb}$ of the four D-meson species is observed. The results are described within uncertainties by theoretical calculations that include initial-state effects. The measurement adds experimental evidence that the modification of the momentum spectrum of D mesons observed in Pb-Pb collisions with respect to pp collisions is due to strong final-state effects induced by hot partonic matter.

0 data tables match query

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

0 data tables match query

Measurement of the ratio of cross sections for inclusive isolated-photon production in $pp$ collisions at $\sqrt s = 13$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 093, 2019.
Inspire Record 1717495 DOI 10.17182/hepdata.89370

The ratio of the cross sections for inclusive isolated-photon production in $pp$ collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb$^{-1}$ and 20.2 fb$^{-1}$, respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of $2.5$ ($5$) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for $Z$ boson production at 13 and 8 TeV using the decay channels $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

0 data tables match query