Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

0 data tables match query

Version 2
Invariant Jet Mass Measurements in $pp$ Collisions at $\sqrt{s} = 200$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.D 104 (2021) 052007, 2021.
Inspire Record 1853218 DOI 10.17182/hepdata.102953

We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at $\sqrt{s}=200$ GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.

0 data tables match query

Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

0 data tables match query

Beam-energy dependence of identified two-particle angular correlations in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 101 (2020) 014916, 2020.
Inspire Record 1740846 DOI 10.17182/hepdata.105909

The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.

0 data tables match query

Measurement of Groomed Jet Substructure Observables in \pp Collisions at $\sqrt{s} = 200$ GeV with STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 811 (2020) 135846, 2020.
Inspire Record 1783875 DOI 10.17182/hepdata.93789

In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.

0 data tables match query

Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 808 (2020) 135663, 2020.
Inspire Record 1791591 DOI 10.17182/hepdata.94263

We report results on the total and elastic cross sections in proton-proton collisions at $\sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 \leq -t \leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $d\sigma/dt \sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 \pm 0.09 (stat.)^{\scriptstyle +0.13}_{\scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $\sigma_{tot}$, obtained from extrapolation of the $d\sigma/dt$ to the optical point at $-t = 0$, is $\sigma_{tot} = 54.67 \pm 0.21 (stat.) ^{\scriptstyle +1.28}_{\scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $\sigma_{el} = 10.85 \pm 0.03 (stat.) ^{\scriptstyle +0.49}_{\scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $\sigma^{det}_{el} = 4.05 \pm 0.01 (stat.) ^{\scriptstyle+0.18}_{\scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $\sigma_{inel} = 43.82 \pm 0.21 (stat.) ^{\scriptstyle +1.37}_{\scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.

0 data tables match query

First measurement of $\Lambda_c$ baryon production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 124 (2020) 172301, 2020.
Inspire Record 1762441 DOI 10.17182/hepdata.94228

We report on the first measurement of the charmed baryon $\Lambda_c^{\pm}$ production at midrapidity ($|y|$ $<$ 1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV collected by the STAR experiment at the Relativistic Heavy Ion Collider. The $\Lambda_c$/$D^0$ (denoting ($\Lambda_c^++\Lambda_c^-$)/($D^0+\bar{D^0}$)) yield ratio is measured to be 1.08 $\pm$ 0.16 (stat.) $\pm$ 0.26 (sys.) in the 0--20% most central Au+Au collisions for the transverse momentum ($p_T$) range 3 $<$ $p_T$ $<$ 6 GeV/$c$. This is significantly larger than the PYTHIA model calculations for $p+p$ collisions. The measured $\Lambda_c$/$D^0$ ratio, as a function of $p_T$ and collision centrality, is comparable to the baryon-to-meson ratios for light and strange hadrons in Au+Au collisions. Model calculations including coalescence hadronization for charmed baryon and meson formation reproduce the features of our measured $\Lambda_c$/$D^0$ ratio.

0 data tables match query

Probing the gluonic structure of the deuteron with $J/\psi$ photoproduction in d+Au ultra-peripheral collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 122303, 2022.
Inspire Record 1922652 DOI 10.17182/hepdata.113508

Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of $J/\psi$ photoproduction off the deuteron in UPCs at the center-of-mass energy $\sqrt{s_{_{\rm NN}}}=200~\rm GeV$ in d$+$Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.

0 data tables match query

Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

0 data tables match query

Two-particle correlations on transverse rapidity in Au+Au collisions at $\sqrt {s_{NN}}=200$ GeV at STAR

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 106 (2022) 044906, 2022.
Inspire Record 2071694 DOI 10.17182/hepdata.129290

Two-particle correlation measurements projected onto two-dimensional, transverse rapidity coordinates ($y_{T1},y_{T2}$), allow access to dynamical properties of the QCD medium produced in relativistic heavy-ion collisions that angular correlation measurements are not sensitive to. We report non-identified charged-particle correlations for Au + Au minimum-bias collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV taken by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Correlations are presented as 2D functions of transverse rapidity for like-sign, unlike-sign and all charged-particle pairs, as well as for particle pairs whose relative azimuthal angles lie on the near-side, the away-side, or at all relative azimuth. The correlations are constructed using charged particles with transverse momentum $p_T \geq 0.15$ GeV/$c$, pseudorapidity from $-$1 to 1, and azimuthal angles from $-\pi$ to $\pi$. The significant correlation structures that are observed evolve smoothly with collision centrality. The major correlation features include a saddle shape plus a broad peak with maximum near $y_T \approx 3$, corresponding to $p_T \approx$ 1.5 GeV/$c$. The broad peak is observed in both like- and unlike-sign charge combinations and in near- and away-side relative azimuthal angles. The all-charge, all-azimuth correlation measurements are compared with the theoretical predictions of {\sc hijing} and {\sc epos}. The results indicate that the correlations for peripheral to mid-central collisions can be approximately described as a superposition of nucleon + nucleon collisions with minimal effects from the QCD medium. Strong medium effects are indicated in mid- to most-central collisions.

0 data tables match query