Strange baryon resonance production in s(NN)**(1/2) = 200-GeV p + p and Au + Au collisions.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 132301, 2006.
Inspire Record 715471 DOI 10.17182/hepdata.102937

We report the measurements of $\Sigma (1385)$ and $\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

0 data tables match query

Partonic flow and Phi-meson production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 112301, 2007.
Inspire Record 746872 DOI 10.17182/hepdata.98969

We present first measurements of the $\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\Omega$ to those of the $\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\Lambda$ baryons, supporting baryon-meson scaling. Since $\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.

0 data tables match query

Di-Hadron Correlations with Identified Leading Hadrons in 200 GeV Au+Au and d+Au Collisions at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 751 (2015) 233-240, 2015.
Inspire Record 1322126 DOI 10.17182/hepdata.73458

The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

0 data tables match query

Measurement of parity-violating spin asymmetries in W$^{\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 051103, 2016.
Inspire Record 1365091 DOI 10.17182/hepdata.73691

We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.

0 data tables match query

Energy Dependence of the Pseudorapidity Distributions in Proton-Nucleus Collisions Between 50-GeV/c and 200-GeV/c.

Halliwell, C. ; Elias, J.E. ; Busza, W. ; et al.
Phys.Rev.Lett. 39 (1977) 1499-1502, 1977.
Inspire Record 123287 DOI 10.17182/hepdata.21004

Pseudorapidity distributions for proton-nucleus interactions are presented. The data cover twelve nuclei ranging from carbon to uranium and three incident proton momenta, 50, 100, and 200 GeV/c.

0 data tables match query

Muon pair and vector meson cross-sections in p W and S U collisions at 200-GeV/nucleon

The NA38 collaboration Abreu, M.C. ; Baglin, C. ; Baldisseri, A. ; et al.
Phys.Lett.B 368 (1996) 230-238, 1996.
Inspire Record 428066 DOI 10.17182/hepdata.28422

Muon pair production is studied in p - W and S  U collisions at 200 GeV per nucleon, as a function of transverse momentum P Tμμ . The inclusive ϱ + ω and Φ differential cross-sections dσ dP T are measured in the dimuon decay channel, for P T ≥ 0.6 GeV/c, in the central rapidity region, 3.0≤ y ≤ 4.0. Assuming the power law A-dependence σ = σ 0 ( A beam · A target ) α , the study of the integrated cross-sections for p - W and S  U collisions leads to α ϱ + ω = 1.00±0.02±0.07 and α Φ = 1.23±0.03±0.05, showing clear evidence of Φ enhancement in S  U interactions as compared to p - W collisions.

0 data tables match query

Event-by-event fluctuations of average transverse momentum in central Pb + Pb collisions at 158-GeV per nucleon.

The NA49 collaboration Appelshäuser, H. ; Bächler, J. ; Bailey, S.J. ; et al.
Phys.Lett.B 459 (1999) 679-686, 1999.
Inspire Record 498247 DOI 10.17182/hepdata.41648

We present first data on event-by-event fluctuations in the average transverse momentum of charged particles produced in Pb+Pb collisions at the CERN SPS. This measurement provides previously unavailable information allowing sensitive tests of microscopic and thermodynamic collision models and to search for fluctuations expected to occur in the vicinity of the predicted QCD phase transition. We find that the observed variance of the event-by-event average transverse momentum is consistent with independent particle production modified by the known two-particle correlations due to quantum statistics and final state interactions and folded with the resolution of the NA49 apparatus. For two specific models of non-statistical fluctuations in transverse momentum limits are derived in terms of fluctuation amplitude. We show that a significant part of the parameter space for a model of isospin fluctuations predicted as a consequence of chiral symmetry restoration in a non-equilibrium scenario is excluded by our measurement.

0 data tables match query

Measurement of the hadronic photon structure function F2(gamma)(x, Q**2) in two-photon collisions at LEP

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 30 (2003) 145-158, 2003.
Inspire Record 631231 DOI 10.17182/hepdata.43218

The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between

0 data tables match query

Measurement of the top quark pair production cross-section in p anti-p collisions using multijet final states

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 012001, 1999.
Inspire Record 475565 DOI 10.17182/hepdata.42156

We have studied tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). Each of the top quarks with these final states decays exclusively to a bottom quark and a W boson, with the W bosons decaying into quark-antiquark pairs. The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.

0 data tables match query

Search for first generation scalar leptoquark pairs in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 80 (1998) 2051-2056, 1998.
Inspire Record 450538 DOI 10.17182/hepdata.42159

We have searched for first generation scalar leptoquark (LQ) pairs in the enu+jets channel using ppbar collider data (integrated luminosity= 115 pb^-1) collected by the DZero experiment at the Fermilab Tevatron during 1992-96. The analysis yields no candidate events. We combine the results with those from the ee+jets and nunu+jets channels to obtain 95% confidence level (CL) upper limits on the LQ pair production cross section as a function of mass and of beta, the branching fraction to a charged lepton. Comparing with the next-to-leading order theory, we set 95% CL lower limits on the LQ mass of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively.

0 data tables match query