Analyzing power A(y) for omega meson production in proton-proton collisions

Abdel-Bary, M. ; Brinkmann, K.Th. ; Clement, H. ; et al.
Phys.Lett.B 662 (2008) 14-18, 2008.
Inspire Record 784829 DOI 10.17182/hepdata.26964

We report on a determination of the analyzing power Ay in the reaction studied with the TOF spectrometer located at the COSY-accelerator (Forschungszentrum Juelich, Germany). This spectrometer is very well suited for polarization measurements due to its rotational symmetry and full coverage of the azimuthal angle. For a beam momentum of p=3065MeV/c corresponding to an excess energy of epsilon (Porson) =129MeV Ay is found to be compatible with zero.

0 data tables match query

Global $\Lambda$-hyperon polarization in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 104 (2021) L061901, 2021.
Inspire Record 1897216 DOI 10.17182/hepdata.110658

Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.

0 data tables match query