Study of $\Upsilon$ production in $p$Pb collisions at $\sqrt{s_{NN}}=8.16$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 11 (2018) 194, 2018.
Inspire Record 1699106 DOI 10.17182/hepdata.93070

The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5<y^*<4.0$ ($-5.0<y^*<-2.5$) for $p$Pb (Pb$p$) collisions. In addition, production cross-sections for $\Upsilon (3S)$ are measured integrated over phase space and the production ratios between all three $\Upsilon (nS)$ states are determined. The measurements are compared to theoretical predictions and suppressions for quarkonium in $p$Pb collisions are observed.

0 data tables match query

Suppression of Upsilon Production in d+Au and Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 735 (2014) 127-137, 2014.
Inspire Record 1269346 DOI 10.17182/hepdata.102940

We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.

0 data tables match query

Study of $\Upsilon$ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}}=5~\mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 07 (2014) 094, 2014.
Inspire Record 1297230 DOI 10.17182/hepdata.64175

Production of $\Upsilon$ mesons in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{NN}}=5 \mathrm{TeV}$ is studied with the LHCb detector. The analysis is based on a data sample corresponding to an integrated luminosity of $1.6 \mathrm{nb}^{-1}$. The $\Upsilon$ mesons of transverse momenta up to $15 \mathrm{GeV}/c$ are reconstructed in the dimuon decay mode. The rapidity coverage in the centre-of-mass system is $1.5 < y < 4.0$ (forward region) and $-5.0 < y < -2.5$ (backward region). The forward-backward production ratio and the nuclear modification factor for $\Upsilon(1S)$ mesons are determined. The data are compatible with the predictions for a suppression of $\Upsilon(1S)$ production with respect to proton-proton collisions in the forward region, and an enhancement in the backward region. The suppression is found to be smaller than in the case of prompt $J/\psi$ mesons.

0 data tables match query

Version 2
Suppression of Upsilon(1S), Upsilon(2S) and Upsilon(3S) production in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 770 (2017) 357-379, 2017.
Inspire Record 1495866 DOI 10.17182/hepdata.77220

The production yields of Upsilon(1S), Upsilon(2S), and Upsilon(3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76 TeV. The data correspond to integrated luminosities of 166 inverse microbarns and 5.4 inverse picobarns for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of Upsilon rapidity y up to 2.4, and transverse momentum pT up to 20 GeV/c. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to approximately 2 and 8, for the Upsilon(1S) and Upsilon(2S) states, respectively. No significant dependence of this suppression is observed as a function of y or pT. The Upsilon(3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of approximately 7 at a 95% confidence level. The observed suppression is in agreement with theoretical scenarios modeling the sequential melting of quarkonium states in a quark gluon plasma.

0 data tables match query

$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

0 data tables match query

Observation of the $\Upsilon$(3S) meson and suppression of $\Upsilon$ states in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIN-21-007, 2023.
Inspire Record 2648528 DOI 10.17182/hepdata.130959

The production of $\Upsilon$(2S) and $\Upsilon$(3S) mesons in lead-lead (PbPb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The $\Upsilon$(3S) meson is observed for the first time in PbPb collisions, with a significance above five standard deviations. The ratios of yields measured in PbPb and pp collisions are reported for both the $\Upsilon$(2S) and $\Upsilon$(3S) mesons, as functions of transverse momentum and PbPb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of $\Upsilon$ yields in PbPb collisions. This suppression increases from peripheral to central PbPb collisions. Furthermore, the suppression is stronger for $\Upsilon$(3S) mesons compared to $\Upsilon$(2S) mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the $\psi$/J, $\psi$(2S), $\Upsilon$(1S), and $\Upsilon$(2S) mesons.

0 data tables match query