Charged Particle Multiplicity Distributions in Proton Anti-proton Collisions at 540-{GeV} Center-of-mass Energy

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 123 (1983) 108-114, 1983.
Inspire Record 182553 DOI 10.17182/hepdata.30779

Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.

0 data tables match query

The role of double parton collisions in soft hadron interactions.

Alexopoulos, T. ; Anderson, E.W. ; Biswas, N.N. ; et al.
Phys.Lett.B 435 (1998) 453-457, 1998.
Inspire Record 480349 DOI 10.17182/hepdata.27080

We have examined charged multiplicities arising from p − p and p− p ̄ collisions over the range of center of mass energies, s , from 30 GeV to 1800 GeV. Results from Tevatron experiment E735 support the presence of double parton interactions. These processes can be seen to account for a large fraction of the increase in the non single diffraction inelastic cross section from energies of about 200 GeV to 1800 GeV.

0 data tables match query

A Study of the General Characteristics of Proton - anti-Proton Collisions at s**(1/2) = 0.2-TeV to 0.9-TeV

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Nucl.Phys.B 335 (1990) 261-287, 1990.
Inspire Record 280412 DOI 10.17182/hepdata.49590

The general characteristics of inelastic proton-antiproton collisions at the CERN SPS Collider are studied with the UA1 detector using magnetic and calorimetric analysis. Results are presented on charged particle multiplicities and transverse and longitudinal momenta, and on total transverse energy distributions at centre of mass energies ranging from 0.2 to 0.9 TeV.

0 data tables match query

phi meson production from p anti-p collisions at s**(1/2) = 1.8-TeV

The E735 collaboration Alexopoulos, T. ; Allen, C. ; Anderson, E.W. ; et al.
Z.Phys.C 67 (1995) 411-416, 1995.
Inspire Record 405368 DOI 10.17182/hepdata.14115

Fermilab experiment E735 located at the CO intersection region of the\(\sqrt s= 1.8\) TeV\(p\bar p\) collider analysed over 900 Φ→K+K− events. Measured were the transverse momentum spectrum, the correlation between the average transverse momentum <pt> and the charged particle multiphcityNc, as well as the probability of Φ production per charged track,NΦ/Nc, versusNc. We have also made an estinate of the total inclusive cross section for Φ mesons,\(\sigma (p\bar p \to \phi X) = 7.3 \pm 2.2 mb\).

0 data tables match query

Jet fragmentation properties of anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 65 (1990) 968-971, 1990.
Inspire Record 297585 DOI 10.17182/hepdata.19919

The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).

0 data tables match query

Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

0 data tables match query

Transverse momentum spectra of charged particles in p anti-p collisions at s**(1/2) = 630-GeV

Bocquet, G. ; Norton, A. ; Wang, H.Q. ; et al.
Phys.Lett.B 366 (1996) 434-440, 1996.
Inspire Record 403649 DOI 10.17182/hepdata.48062

We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN collider. We have studied the production of charged particles with transverse momenta ( p T ) up to 25 GeV/c. The results are in agreement with QCD predictions. The rise of 〈 p T 〉 with charged particle multiplicity may be related to changing production of low p T particles.

0 data tables match query

Soft and hard interactions in p anti-p collisions at s**(1/2) = 1800-GeV and 630-GeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 072005, 2002.
Inspire Record 567774 DOI 10.17182/hepdata.68015

We present a study of pp¯ collisions at s=1800 and 630 GeV collected using a minimum bias trigger by the CDF experiment in which the data set is divided into two classes corresponding to “soft” and “hard” interactions. For each subsample, the analysis includes measurements of the multiplicity, transverse momentum (pT) spectrum, and the average pT and event-by-event pT dispersion as a function of multiplicity. A comparison of results shows distinct differences in the behavior of the two samples as a function of the center of mass (c.m.) energy. We find evidence that the properties of the soft sample are invariant as a function of c.m. energy.

0 data tables match query

A Comparison of Hadron Production in $p \bar{p}$ and $p p$ Collisions in the Central Region at $\sqrt{s}=53$-{GeV}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Nucl.Phys.B 228 (1983) 409-423, 1983.
Inspire Record 190653 DOI 10.17182/hepdata.37131

We have studied the inclusive production of the hadrons π ± , K ± , p, p , Λ, Λ , ρ and ⋉ in the central region at the ISR s = 53 GeV , in both pp and p p collisions. Differences are observed only for K ± , p, and p production. We then study also correlations between low- p T pp and p p pairs in the two types of collisions, separating the contribution from baryon pair production and from the incident particles (stopping protons). We observe a positive correlation between two stopping protons; between the production of two pairs, and between a stopping proton and a pair production, there are negative correlations.

0 data tables match query

Measurement of Particle Production and Inclusive Differential Cross Sections in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112005, 2009.
Inspire Record 817466 DOI 10.17182/hepdata.52134

We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.

0 data tables match query