Quasielastic Electron-Deuteron Scattering Between q$^2$=18f$^{-2}$ and 100f$^{-2}$

Albrecht, W. ; Behrend, H.J. ; Dorner, H. ; et al.
Phys.Lett.B 26 (1968) 642-644, 1968.
Inspire Record 53149 DOI 10.17182/hepdata.29312

Quasielastic e-d scattering measurements were performed up to q 2 = 100 fm −2 . Only the electron was detected. The ratio R= ( d 2 ω d Ω d E′) ed d ω d Ω) ep was measured at the quasielastic peak; the magnetic form factor G M N of the neutron was deduced using the assumption G E N = 0.

2 data tables

No description provided.

CONST(NAME=MU) is the magnetic moment. The magnetic formfarctor (GM) is evaluated ander assumption of GE=0.


INELASTIC ELECTRON - DEUTERON SCATTERING AT HIGH-ENERGIES

Poucher, John Scott ;
PhD Thesis, 1971.
Inspire Record 67677 DOI 10.17182/hepdata.417

None

28 data tables

No description provided.

No description provided.

No description provided.

More…

INELASTIC ELECTRON - DEUTERON SCATTERING AND THE STRUCTURE OF THE NEUTRON

Bodek, Arie ;
COO-3069-116, 1972.
Inspire Record 74596 DOI 10.17182/hepdata.463

None

38 data tables

No description provided.

No description provided.

No description provided.

More…

High-Energy Single-Arm Inelastic e - p and e - d Scattering at 6-Degrees and 10-Degrees

Poucher, J.S. ; Breidenbach, Martin ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 32 (1974) 118, 1974.
Inspire Record 81157 DOI 10.17182/hepdata.3374

Differential cross sections for electron scattering from hydrogen and deuterium in the deep-inelastic region show that the neutron cross section is significantly smaller than the proton cross section over a large part of the kinematic region studied. Although νW2d differs in magnitude from νW2p, it exhibits a similar scaling behavior.

3 data tables

No description provided.

No description provided.

No description provided.


Electron Scattering at 4-Degrees with Energies of 4.5-GeV - 20-GeV

Stein, S. ; Atwood, W.B. ; Bloom, Elliott D. ; et al.
Phys.Rev.D 12 (1975) 1884, 1975.
Inspire Record 100597 DOI 10.17182/hepdata.4669

This paper presents the results of the analysis of a single-arm inelastic-electron-scattering experiment at an angle of 4°. We present data on the turnon of scaling in the low-q2 region 0.1<q2<1.8, the neutron-proton comparison at large values of the scaling variable ω, resonance excitation, and the shadowing in scattering from heavy nuclei.

21 data tables

No description provided.

No description provided.

No description provided.

More…

Extraction of the Structure Functions and R=Sigma-L/Sigma-T from Deep Inelastic e p and e d Cross-Sections

Riordan, E.M. ; Bodek, A. ; Breidenbach, Martin ; et al.
SLAC-PUB-1634, 1975.
Inspire Record 100687 DOI 10.17182/hepdata.591

None

103 data tables

No description provided.

No description provided.

No description provided.

More…

Inelastic electron Scattering from Hydrogen at 50-Degrees and 60-Degrees

Atwood, W.B. ; Bloom, Elliott D. ; Cottrell, R.Leslie ; et al.
Phys.Lett.B 64 (1976) 479-482, 1976.
Inspire Record 108900 DOI 10.17182/hepdata.18790

Inelastic electron scattering cross sections have been measured for four-momentum transfers between 4.1 GeV 2 and 30.5 GeV 2 . At the large scattering angles of this experiment, the dominant contribution to the cross section comes from the W 1 structure function. In the conventional scaling variables, x and x ′, this structure function does not exhibit scaling behavior, and at fixed x or x ′ it is found to decrease with increasing four-momentum transfer.

29 data tables

No description provided.

No description provided.

No description provided.

More…

A MEASUREMENT OF THE PROTON STRUCTURE FUNCTIONS USING INELASTIC ELECTRON SCATTERING

Mestayer, M.D. ;
PhD Thesis, 1978.
Inspire Record 131529 DOI 10.17182/hepdata.14
54 data tables

No description provided.

No description provided.

No description provided.

More…

MEASUREMENTS OF SHADOWING IN LOW Q**2 ELECTROPRODUCTION ON NUCLEI

Bailey, J. ; Botterill, D.R. ; Montgomery, Hugh E. ; et al.
Nucl.Phys.B 151 (1979) 367-388, 1979.
Inspire Record 132234 DOI 10.17182/hepdata.34763

Measurements of inelastic electron scattering have been made in the range 2.2 < ν < 3.8 GeV and 0.1 < | Q 2 | < 0.3 (GeV/ c ) 2 , on a selection of nuclei ranging from hydrogen and deuterium to uranium, by measuring the scattered electron only. Detailed calculations have been made of the contribution of radiative tails to the measured yield. The results show a small ‘shadowing’ consistent with other electroproduction experiments, and also with photoproduction experiments in this ν range, but the shadowing decreases rapidly as | Q 2 | increases.

4 data tables

DEUTERIUM TO HYDROGEN CROSS SECTION RATIO (PER NUCLEON). FOR E(P=3) = 2.25 AND THETA = 8.5, THE RATIO IS 0.911 +- 0.037 (DSYS = 0.040).

No description provided.

No description provided.

More…

Experimental Studies of the Neutron and Proton Electromagnetic Structure Functions

Bodek, A. ; Breidenbach, Martin ; Dubin, D.L. ; et al.
Phys.Rev.D 20 (1979) 1471-1552, 1979.
Inspire Record 140185 DOI 10.17182/hepdata.4325

We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.

100 data tables

No description provided.

No description provided.

No description provided.

More…