MEASUREMENT OF n p ELASTIC SCATTERING AT HIGH-ENERGIES AND VERY SMALL MOMENTUM TRANSFERS

The Freiburg-Moscow collaboration Arefev, A. ; Babaev, A. ; Bamberger, A. ; et al.
Nucl.Phys.B 232 (1984) 365, 1984.
Inspire Record 190837 DOI 10.17182/hepdata.33883

The np elastic differential cross section has been measured for incident neutron momenta 100–400 GeV/ c in the | t | range 6 · 10 −6 − 5 · 10 −1 (GeV/ c ) 2 . The np data of this experiment provide a first direct measurement of the hadronic amplitude for | t | < 10 −2 (GeV/ c ) 2 , which is consistent with the extrapolations from higher | t | values. Our data for | t | < 10 −4 (GeV/ c ) 2 are consistent with a rise which can be attributed to Schwinger scattering, caused by the interaction of the neutron magnetic moment with the proton.

10 data tables

No description provided.

No description provided.

No description provided.

More…

Nuclear Cross Sections for 1.4-Bev Neutrons

Coor, T. ; Hill, D.A. ; Hornyak, W.F. ; et al.
Phys.Rev. 98 (1955) 1369-1386, 1955.
Inspire Record 46644 DOI 10.17182/hepdata.248

Transmission measurements in good and poor geometry have been performed at the Brookhaven Cosmotron to measure the total and absorption cross sections of several nuclei for neutrons in the Bev energy range. The neutrons are produced by bombarding a Be target with 2.2-Bev protons. The neutron detector requires the incident particle to pass an anticoincidence counter and produce in an aluminum radiator a charged particle that will traverse a fourfold scintillation telescope containing 6 in. of lead. Contribution of neutrons below 800 Mev are believed small. The angular distribution of neutrons from the target is sharply peaked forward with a half-width of 6°. The integral angular distributions of diffraction scattered neutrons from C, Cu, and Pb are measured by varying the detector geometry. The angular half-width of these distributions indicates a mean effective neutron energy of 1.4±0.2 Bev. The total cross sections σH and σD−σH are measured by attenuation differences in good geometry of CH2-C and D2O-H2O, with the result: σH=42.4±1.8 mb, σD−σH=42.2±1.8 mb. The cross sections of eight elements from Be to U are measured in good and poor geometry, and the following values of the total and absorption cross sections are deduced (in units of millibrans): Experimental errors are about 3 percent in σtotal and 5 percent in σabsorption. An interpretation of these cross sections is given in terms of optical model parameters for two extreme nuclear density distributions: uniform (radius R) and Gaussian [ρ=ρ0exp−(ra)2]. The absorption cross-section data are well fitted with R=1.28A13 or a=0.32+0.62A13 in units of 10−13 cm. A nuclear density distribution intermediate between uniform and Gaussian will make the present results consistent with the recent electromagnetic radii.

2 data tables

'ALL'.

No description provided.


Total cross sections for interaction of neutrons with protons and neutrons from 2.6 to 8.3 BeV

Pantuev, V.S. ; Khachturyan, M.N. ; Chuvilo, I.V. ;
Sov.J.Nucl.Phys. 1 (1965) 93-99, 1965.
Inspire Record 1392860 DOI 10.17182/hepdata.11

None

2 data tables

'1'. '2'. '3'.

No description provided.


Neutron-proton and neutron-deuteron total cross-sections at 4.0 and 5.7 gev/c

Parker, E.F. ; Gustafson, H.Richard ; Jones, Lawrence W. ; et al.
Phys.Lett.B 31 (1970) 246-249, 1970.
Inspire Record 63208 DOI 10.17182/hepdata.6170

The np and nd total cross sections have been measured directly with a neutron beam with momenta of 4.0 ± 0.6 and 5.7 ± 0.6 GeV/ c . The data are compared with the previous nucleon-nucleon and nucleon-deuteron results, and the deuteron screening term was also evaluated. The measured total cross section are 43.1 ± 0.6 and 80.3 ± 1.9 mb at 4.0 GeV/ c and 42 ± 0.6 and 77.8 ± 1.3 mb at 5.7 GeV/ c .

3 data tables

No description provided.

No description provided.

No description provided.


Total cross-section for n-p and n-d scattering at 10 GeV/c neutron momentum

Engler, J. ; Horn, K. ; König, J. ; et al.
Phys.Lett.B 27 (1968) 599-601, 1968.
Inspire Record 1389110 DOI 10.17182/hepdata.752

The total neutron cross-sections were measured with high precision for hydrogen and deuterium. At an average neutron momentum of 10 GeV/c we obtained σ T (np)=39.5±0.5 mb and σ T (nd)=73.3±1.1 mb. These values are in excellent agreement with p-p and p-d total cross sections. No energy dependence was found for n-p cross section between 4 and 10 GeV/c.

3 data tables

No description provided.

No description provided.

No description provided.


Direct measurement of n-p and n-d total cross-sections from 700 mev/c to 2900 mev/c

Mischke, R.E. ; Devlin, T.J. ; Johnson, W. ; et al.
Phys.Rev.Lett. 25 (1970) 1724-1727, 1970.
Inspire Record 62826 DOI 10.17182/hepdata.21646

Neutron-proton and neutron-deuteron total cross sections have been measured directly at the Princeton-Pennsylvania Accelerator using time of flight to determine the incident neutron momentum. The results cover the region from 700 to 2900 MeVc with a typical accuracy of 0.8% for each of 26 momentum bins. The data are not consistent with the most precise previous measurements in the same momentum range.

1 data table

No description provided.


Neutron-Proton and Neutron-Deuteron Total Cross Sections from 14 to 27 GeV/c

Kriesler, Michael N. ; Jones, Lawrence W. ; Longo, Michael J. ; et al.
Phys.Rev.Lett. 20 (1968) 468-471, 1968.
Inspire Record 54461 DOI 10.17182/hepdata.21734

The first direct measurements of neutron-proton and neutron-deuteron total cross sections in the momentum range 14 to 27 GeV/c are presented. The np total cross section apparently becomes less than the pp total cross section in this momentum region. Our results show no evidence for a rapid vanishing of the Glauber screening correction as predicted by Abers et al. on the basis of Regge theory.

1 data table

'1'. '2'.


Measurement of n p and n d total cross-sections from 0.7-GeV/c to 3.6-GeV/c

Devlin, T.J. ; Johnson, W. ; Norem, J. ; et al.
Phys.Rev.D 8 (1973) 136-155, 1973.
Inspire Record 81663 DOI 10.17182/hepdata.22079

We present direct measurements of the total cross section for neutrons on protons and deuterons in the momentum range 0.7 to 3.6 GeVc. Using these and other nucleon-nucleon total cross sections, we evaluate total cross sections in the pure isospin states.

4 data tables

No description provided.

No description provided.

COMPUTED USING SIG(I=0) = 2*SIG(NP) - SIG(PP) FROM SIG(NP) AND INTERPOLATED PREVIOUSLY MEASURED PROTON-PROTON CROSS SECTIONS.

More…

Neutron-Proton Total Cross-Sections from 40-GeV/c to 280-GeV/c

Longo, Michael J. ; Ayre, Cyril A. ; Gustafson, H.Richard ; et al.
Phys.Rev.Lett. 33 (1974) 725, 1974.
Inspire Record 89896 DOI 10.17182/hepdata.21237

We present results of measurements of the n−p total cross section between 30 and 280 GeV/c. The measurements were carried out with a neutron beam by using the standard transmission technique and a liquid-hydrogen target. A total-absorption calorimeter was used to determine the neutron energy. Our measurements, which have an accuracy of ∼1%, indicate a smooth rise of approximately 1.5 mb between 50 and 280 GeV/c. The combined n−p and p−p data above 20 GeV/c are well fitted by the expression σ=38.4+0.85|ln(s95)|1.47 mb.

1 data table

MOST DATA TAKEN WITH 300 GEV/C INCIDENT PROTONS TO PRODUCE THE NEUTRON BEAM, WITH SOME ALSO USING 200 GEV/C PROTONS.


Measurement of the longitudinal spin dependent neutron - proton total cross-section difference Delta sigma-L (n p) between 500-MeV - 800-MeV

Beddo, M. ; Burleson, G. ; Faucett, J.A. ; et al.
Phys.Rev.D 50 (1994) 104-123, 1994.
Inspire Record 37179 DOI 10.17182/hepdata.22460

A measurement of ΔσL(np), the difference between neutron-proton total cross sections for pure longitudinal spin states, is described. Data were taken at LAMPF for five neutron beam kinetic energies: 484, 568, 634, 720, and 788 MeV. The statistical errors are in the range of 0.64–1.35 mb. Various sources of systematic effects were investigated and are described. Overall systematic errors are estimated to be on the order of 0.5 mb and include an estimate for the uncertainty in the neutron beam polarization. The ΔσL results are consistent with previous results from PSI and Saclay. These data, when combined with other results and fitted to a Breit-Wigner curve, are consistent with an elastic I=0 resonance with mass 2214±15 (stat) ±6 (syst) MeV and width 75±21±12 MeV. Because of a lack of ΔσT(np) data between 500 and 800 MeV, it is not possible to differentiate between a singlet or coupled-triplet partial wave being responsible.

2 data tables

No description provided.

The (I=0) part of SIG(NAME=CLL) after subtraction of the p p data, (I=1) part.