ANGULAR AND ENERGY DEPENDENCE OF THE CROSS-SECTION AND ANALYZING POWER OF THE REACTION P P ----> D PI+ BETWEEN 725-MEV AND 1000-MEV

Mayer, B. ; Bertini, R. ; Cameron, J.M. ; et al.
Nucl.Phys.A 437 (1985) 630-642, 1985.
Inspire Record 217258 DOI 10.17182/hepdata.37040

The differential cross section and analyzing power of the reaction pp → d π + were measured for nine incident proton energies between 725 and 1000 MeV. A magnetic spectrometer was used to detect either deuterons or pions. Cross-section and analyzing-power angular distributions were respectively fitted with Legendre polynomial and associated Legendre function expansions, the coefficients of which were found to vary smoothly with energy in the vicinity of the alleged 3 F 3 dibaryon resonance.

12 data tables

Data present here in form of Legendre polynomial fit.

Legendre Polynomial fit to cross section.

Legendre polynomial fit to analysing power.

More…

ENERGY VARIATION OF THE ANALYZING POWER IN THE REACTION P (polarized) P ---> D PI+

Saha, A. ; Seth, K.K. ; Kielczewska, D. ; et al.
Phys.Rev.Lett. 51 (1983) 759-762, 1983.
Inspire Record 196398 DOI 10.17182/hepdata.20478

Precision measurements of the analyzing powers for the reaction ppol+p→d+π+ have been made at ≃ 550, 600, 650, 700, and 800 MeV. The data have been analyzed in terms of Legendre polynomials. It is found that excitation functions for both even and odd Legendre coefficients exhibit very similar resonant behaviors. It is concluded that the triplet amplitudes are as strongly dominated by the Δ(1232) as the well-known singlet amplitude, D21, and that the data do not exhibit any anomalous behavior suggestive of dibaryon resonances.

1 data table

No description provided.


Measurements of the differential cross-section of the reaction p p ---> d pi+ from 3.0 to 5.0 gev/c

Anderson, H.L. ; Larson, D.A. ; Myrianthopoulos, L.C. ; et al.
Phys.Rev.D 9 (1974) 580-596, 1974.
Inspire Record 93111 DOI 10.17182/hepdata.21941

A measurement of the complete differential cross section for the reaction pp→dπ+ at 3.00, 3.20, 3.43, 3.65, 3.83, 4.00, 4.20, and 5.05 GeVc incident proton momentum has been made in an attempt to establish the role of the Δ (1950) in this region. The data show that the previously observed enhancement in the forward cross section between 3 and 4 GeVc due to this isobar is an effect which damps out quickly as the production angle departs from zero degrees, in contrast with the well-known enhancement at 1.35 GeVc, which is evident at all angles. In particular, the one-pion-exchange model is in poor agreement with the extended set of data. A detailed description is given of a novel proportional-wire-chamber system which facilitated the selection of this rather rare reaction from a very high competing background.

3 data tables

Axis error includes +- 6/6 contribution.

Axis error includes +- 6/6 contribution.

No description provided.