The Real Part of the Forward Elastic Nuclear Amplitude for p p, anti-p p, pi+ p, pi- p, K+ p, and K- p Scattering Between 70-GeV/c and 200-GeV/c

Fajardo, L.A. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.D 24 (1981) 46, 1981.
Inspire Record 152596 DOI 10.17182/hepdata.24028

We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.

1 data table

No description provided.


Elastic Scattering of 10-GeV/c pi+ and K+ Mesons and of 9-GeV/c Protons on Protons

Baglin, C. ; Briandet, P. ; Fleury, P. ; et al.
Nucl.Phys.B 98 (1975) 365-400, 1975.
Inspire Record 98834 DOI 10.17182/hepdata.31908

Angular distributions of π + and K + p elastic scattering have been measured for an incident beam momentum of 10.0 GeV/ c . For π + p elastic scattering almost the complete angular distribution was measured. The angular distribution of proton-proton elastic scattering was measured for an incident momentum of 9.0 GeV/ c in the interval of the four-momentum transfer squared from 0.7 (GeV/ c ) 2 to 5.0 (GeV/ v ) 2 . For π + p elastic scattering the structures at − t = 2.8 (GeV/ c ) 2 and − t = 4.8 (GeV/ c ) 2 are less pronounced than at lower momenta. The cross section for scattering at 90° in the c.m. system is of the order of 1 nb/GeV/ c ) 2 . For K + p elastic scattering is a break in the angular distribution around − t = 3 (GeV/ c ) 2 . The differential cross sections for proton-proton elastic scattering decrease smoothly with increasing momentum transfers.

3 data tables

S=19.667 GEV**2, U=-T-17.867 GEV**2.

S=19.91 GEV**2, U=-T-17.704 GEV**2.

S=18.74 GEV**2.