STUDY OF REACTIONS pi+ p ---> (rho0, omega) DELTA++ (1236) AT 10.3-GeV/c

Beaufays, J. ; Kennedy, C.N. ; Key, A.W. ; et al.
Phys.Rev.D 18 (1978) 27, 1978.
Inspire Record 6322 DOI 10.17182/hepdata.24331

Cross sections, differential cross sections, single and joint spin-density matrix elements are given for the reactions π+p→(ρ0, ω)Δ++ at 10.3 GeV/c. Correlations between the vector-meson and the Δ++ decay angular distributions are observed. A discussion of the results in terms of particle exchange, SU(3) symmetry, quark additivity, and the equal-phase hypothesis is presented. The amplitudes for the process π+p→ρ0Δ++ are extracted by a model-dependent analysis and compared with current theoretical predictions.

9 data tables

P-WAVE BREIT-WIGNER RESONANCES PLUS BACKGROUND USED WITH SLICE TECHNIQUE.

FROM RESONANCE OVERLAP REGION WITH BACKGROUND SUBTRACTED AND NORMALIZED TO TOTAL CROSS SECTION.

FROM RESONANCE OVERLAP REGION WITH BACKGROUND SUBTRACTED AND NORMALIZED TO TOTAL CROSS SECTION.

More…

Study of the Reaction pi+ p --> rho0 Delta++ (1236) at 16-GeV/c

The Aachen-Berlin-Bonn-CERN-Cracow-Heidelberg collaboration Honecker, R. ; Lauscher, P. ; Laven, H. ; et al.
Nucl.Phys.B 106 (1976) 365-384, 1976.
Inspire Record 108897 DOI 10.17182/hepdata.35864

The reaction π + p → ϱ 0 Δ ++ (1236) at 16 GeV/ c has been studied. Cross section, differential cross section, single and joint spin-density matrix elements are given. Correlations between the ϱ 0 and Δ ++ (1236) decay distributions are observed. Unnatural spin-parity exchanges, mainly observed at small t ' values, dominate the ϱ 0 Δ ++ (1236) production. The natural exchange contributions are only (7 ± 2)% and become as important as the unnatural exchanges beyond t ' = 0.3 GeV 2 . Contributions to Δ ++ (1236) helicity 3 2 states do not exceed 20% of the total ϱ 0 Δ ++ (1236) cross section and are mainly due to unnatural exchanges.

6 data tables

'SLICE METHOD' USED TO HANDLE RESONANCE TAILS AND BACKGROUND.

FROM EVENTS WITHIN MASS-CUTS FOR RESONANCES AND NORMALIZED TO TOTAL CROSS SECTION.

More…

Study of Vector Meson Baryon Resonance Production in pi+ p Interactions at 7.1-GeV/c

Chung, S.U. ; Protopopescu, S.D. ; Eisner, R.L. ; et al.
Phys.Rev.D 12 (1975) 693, 1975.
Inspire Record 99147 DOI 10.17182/hepdata.48154

From a large-statistics π+p experiment at 7.1 GeV/c, data are presented on the reactions π+p→ρ0Δ++(1238) and π+p→ωΔ++(1238). Cross sections, differential cross sections, and vector-meson single-density-matrix elements are presented and a general comparison of the production properties of the two reactions is given. In addition to (ρ,ω)Δ++(1238) production there is also strong evidence for production of a π+p enhancement with mass ∼ 1880 MeV, Γ∼200 MeV, and J≥72 produced in association with the ρ and ω resonances. Detailed properties of this structure are presented and its production mechanism is compared with that of the corresponding Δ(1238) reactions. This state is also observed in the reaction K+p→K*0(890)Δ++(1880) at 12.0 GeV/c, for which data are also presented.

15 data tables

STATISTICAL ERRORS ONLY.

No description provided.

JACKSON FRAME.

More…

Rho0 delta++ and omega delta++ joint decay correlations at 3.7 gev/c

Barnham, K.W.J. ; Abrams, G.S. ; Butler, W.R. ; et al.
Phys.Rev.D 7 (1973) 1384-1394, 1973.
Inspire Record 82336 DOI 10.17182/hepdata.22157

The joint decay density-matrix elements have been measured for the ρ0Δ++ and ωΔ++ channels at 3.7 GeV/c. The data are presented as a function of momentum transfer in both the t-channel and s-channel coordinate systems. The presence of correlated decays is illustrated for both reactions by employing selective cuts on the decay angles of one resonance, and displaying the effects on the decay distribution of the opposing resonance. An amplitude analysis is performed with the data near 0° production angle, where we obtain a helicity decomposition of the scattering amplitude with no experimental ambiguity.

4 data tables

T-CHANNEL COORDINATE SYSTEM (XYZ=TH).

T-CHANNEL COORDINATE SYSTEM (XYZ=TH).

S-CHANNEL COORDINATE SYSTEM (XYZ=SH).

More…

Study of pi+ p four prong interactions from 2.95-GeV/c to 4.08-GeV/c

Brown, David ; Gidal, George ; Birge, Robert W. ; et al.
Phys.Rev.D 1 (1970) 3053, 1970.
Inspire Record 74876 DOI 10.17182/hepdata.25065

In a study of the production mechanism of quasi-two-body final states at the five incident π+ momenta 2.95, 3.2, 3.5, 3.75, and 4.08 GeV/c, approximately 40 000 events with four outgoing charged particles were investigated. The cross sections for the processes π+p→N*++ρ, π+p→N*++ω, π+p→N*++η, and π+p→N*++f have been measured as a function of the pion energy. The differential cross sections and the decay density-matrix elements are discussed in terms of one-meson-exchange models [with absorption (OPEA) and with form factor (OPEW)] and Regge models. For the N*++ρ and the N*++ω reactions, the joint-decay matrix elements are calculated. The formation of N*(2850) in the direct channel is also investigated.

30 data tables

No description provided.

No description provided.

No description provided.

More…

Study of four-prong events in pi+ p interactions at 3.5 gev/c

Ronat, E.E. ; Eisenberg, Y. ; Lyons, L. ; et al.
Nucl.Phys.B 38 (1972) 20-36, 1972.
Inspire Record 75333 DOI 10.17182/hepdata.32958

The non-strange four-prong events of π + p interactions at 3.5 GeV/ c are studied. Cross sections are calculated for all resonance productions in the channels π + p → p π + π + π − ( σ T = 3.18 ± 0.13 mb) and π + p → p π + π + π − π o ( σ T = 4.03 ± 0.16 mb). The dominant two body reactions Δ ++ ϱ o and Δ ++ ω o are investigated in detail, and production and decay distributions are presented as well as joint decay density matrix elements and joint correlation terms. The Δ ++ ϱ o reaction is compared to predictions of OPE with absorption and the Δ ++ ω o is compared to rho-exchange with sharp cutoff.

7 data tables

FOUR-PRONG, NON-STRANGE CROSS SECTIONS. SYSTEMATIC ERROR INCLUDED.

BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI-> FINAL STATE.

BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI- PI0> FINAL STATE.

More…